Masoud Kargar | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Masoud Kargar | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Masoud Kargar | Islamic Azad University | Iran

Dr. Masoud Kargar is an Assistant Professor in the Department of Computer Engineering at Islamic Azad University, Tabriz Branch, specializing in artificial intelligence, machine learning, reinforcement learning, and software system engineering. He earned his bachelor’s degree in applied mathematics, master’s degree in software engineering, and Ph.D. in software engineering with a focus on modularization of multi-programming software systems. Dr. Kargar has extensive academic experience, having taught a wide range of undergraduate, master’s, and doctoral courses in advanced programming, algorithms, software engineering, data mining, big data, project management, and natural language processing across multiple universities. He also serves as the Director of Information and Communication Technology and leads the development of various software systems. Dr. Kargar is a member of the editorial board of the Iranian Journal of Computer Science (Springer) and has published 19 documents, which have been cited 89 times, giving him an h-index of 6. His research contributions have significantly advanced the fields of machine learning and software engineering, and his academic leadership continues to inspire both students and colleagues. Dr. Kargar remains committed to fostering innovation and excellence in computer engineering education and research.

Profiles: Scopus | Google Scholar | Orcid | Research Gate

Featured Publications

Karegar, M., Isazadeh, A., Fartash, F., Saderi, T., & Navin, A. H. (2008). Data-mining by probability-based patterns. Proceedings of the 30th International Conference on Information Technology Interfaces, 28.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2019). Multi-programming language software systems modularization. Computers & Electrical Engineering, 80, 106500.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2017). Semantic-based software clustering using hill climbing. 2017 International Symposium on Computer Science and Software Engineering.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2020). Improving the modularization quality of heterogeneous multi-programming software systems by unifying structural and semantic concepts. Journal of Supercomputing, 76(1), 17.

Navin, A. H., Fesharaki, M. N., Mirnia, M., & Kargar, M. (2007). Modeling of random variable with digital probability hyper digraph: Data-oriented approach. Proceedings of World Academy of Science, Engineering and Technology, 25, 25.

Bayani, A., & Kargar, M. (2024). LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network. Physiological Reports, 12(17), e16182.

Karegar, M., Saderi, T., Isazadeh, A., & Fartash, F. (2008). Electronic consulting in marketing. 2008 3rd International Conference on Information and Communication Technology, 5.

Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr. Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr.  Koagne Longpa Tamo Silas, University of Dschang, Cameroon.

Koagne Longpa Tamo Silas is a dedicated researcher in the field of medical physics, specializing in automation, artificial intelligence, and electronic system design. His academic journey from Bamenda State University to Dschang State University reflects his continuous pursuit of knowledge and innovation. His contributions to circuit simulation, embedded systems, and artificial neural networks have established him as a promising figure in medical physics.

Profile

Google Scholar

🎓 Early Academic Pursuits

Born on July 12, 1998, in Mbouda, Cameroon, Koagne Longpa Tamo Silas displayed a keen interest in science and technology from a young age. His passion for physics and engineering led him to pursue higher education at Bamenda State University, where he embarked on an academic journey in Electrical and Power Engineering. His undergraduate studies, from November 2015 to August 2018, laid the foundation for his expertise in electrical systems, automation, and circuit design. Eager to expand his knowledge, he continued his postgraduate studies in the same field at Bamenda State University from September 2018 to July 2020, honing his skills in power engineering and applied electronics.

🚀 Professional Endeavors

Determined to deepen his expertise, Koagne Longpa Tamo Silas transitioned into the field of physics, enrolling as a Ph.D. student at Dschang State University in December 2022. His academic pursuits in the Department of Physics align with his interests in medical physics, where he integrates automation, applied computer science, and electronics to innovate in the field. As a dedicated researcher, he continues to engage with the Faculty of Science at Dschang State University, contributing to the academic and scientific community with his research in medical physics and embedded systems.

🤖 Contributions and Research Focus

Koagne Longpa Tamo Silas has dedicated his research efforts to the intersection of medical physics, automation, and artificial intelligence. His work encompasses Analog Artificial Neural Networks, Embedded Systems, Circuit Simulation, Digital and Analog Electronics, and Microcontroller Programming. His proficiency in tools like Spice Simulation, Cadence Virtuoso, and Electronic Design Automation allows him to design and optimize medical devices and automated systems. His research aims to enhance diagnostic and therapeutic tools in medical physics by leveraging artificial intelligence and embedded systems.

🏆 Accolades and Recognition

Throughout his academic and research career, Koagne Longpa Tamo Silas has garnered recognition for his contributions to medical physics and electronics. His innovative approach to circuit simulation and signal processing has positioned him as a promising researcher in his field. His dedication to advancing medical technologies has earned him the respect of his peers and mentors, as he continues to contribute valuable insights to the scientific community.

🌐 Impact and Influence

Through his academic journey and research, Koagne Longpa Tamo Silas has influenced the way automation and artificial intelligence are integrated into medical physics. His work in digital electronics and microcontroller programming is paving the way for innovative solutions in the medical field. His contributions extend beyond research, as he actively engages with students and researchers, fostering a culture of knowledge-sharing and scientific exploration.

 

Publication

  • A High-Resolution Non-Volatile Floating Gate Transistor Memory Cell for On-Chip Learning in Analog Artificial Neural Networks
    Authors: KLT Silas, DTA Bernard, FT Bernard, L Jean-Pierre, GW Ejuh
    Year: 2025

 

  • Breast Cancer Diagnosis with Machine Learning Using Feed-Forward Multilayer Perceptron Analog Artificial Neural Network
    Authors: B Djimeli-Tsajio Alain, KLT Silas, LT Jean-Pierre, N Thierry, GW Ejuh
    Year: 2024

 

  • Design and Implementation of a Digital Breath Alcohol Detection System with SMS Alert and Vehicle Tracking on Google Map
    Author: KLT Silas
    Year: 2020

 

  • Design and Realization of an Electronic Attendance System Based on RFID with an Automatic Door Unit
    Author: MK Jules
    Year: 2018

 

🎯 Conclusion

With a vision to transform medical physics through automation and AI-driven technologies, Koagne Longpa Tamo Silas is on a path to making significant contributions to healthcare innovation. His passion, dedication, and expertise ensure that his research will continue to shape the future of medical technology, leaving a lasting impact on both academia and practical applications in the field.