Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr. Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr.ย  Koagne Longpa Tamo Silas, University of Dschang, Cameroon.

Koagne Longpa Tamo Silas is a dedicated researcher in the field of medical physics, specializing in automation, artificial intelligence, and electronic system design. His academic journey from Bamenda State University to Dschang State University reflects his continuous pursuit of knowledge and innovation. His contributions to circuit simulation, embedded systems, and artificial neural networks have established him as a promising figure in medical physics.

Profile

Google Scholar

๐ŸŽ“ Early Academic Pursuits

Born on July 12, 1998, in Mbouda, Cameroon, Koagne Longpa Tamo Silas displayed a keen interest in science and technology from a young age. His passion for physics and engineering led him to pursue higher education at Bamenda State University, where he embarked on an academic journey in Electrical and Power Engineering. His undergraduate studies, from November 2015 to August 2018, laid the foundation for his expertise in electrical systems, automation, and circuit design. Eager to expand his knowledge, he continued his postgraduate studies in the same field at Bamenda State University from September 2018 to July 2020, honing his skills in power engineering and applied electronics.

๐Ÿš€ Professional Endeavors

Determined to deepen his expertise, Koagne Longpa Tamo Silas transitioned into the field of physics, enrolling as a Ph.D. student at Dschang State University in December 2022. His academic pursuits in the Department of Physics align with his interests in medical physics, where he integrates automation, applied computer science, and electronics to innovate in the field. As a dedicated researcher, he continues to engage with the Faculty of Science at Dschang State University, contributing to the academic and scientific community with his research in medical physics and embedded systems.

๐Ÿค– Contributions and Research Focus

Koagne Longpa Tamo Silas has dedicated his research efforts to the intersection of medical physics, automation, and artificial intelligence. His work encompasses Analog Artificial Neural Networks, Embedded Systems, Circuit Simulation, Digital and Analog Electronics, and Microcontroller Programming. His proficiency in tools like Spice Simulation, Cadence Virtuoso, and Electronic Design Automation allows him to design and optimize medical devices and automated systems. His research aims to enhance diagnostic and therapeutic tools in medical physics by leveraging artificial intelligence and embedded systems.

๐Ÿ† Accolades and Recognition

Throughout his academic and research career, Koagne Longpa Tamo Silas has garnered recognition for his contributions to medical physics and electronics. His innovative approach to circuit simulation and signal processing has positioned him as a promising researcher in his field. His dedication to advancing medical technologies has earned him the respect of his peers and mentors, as he continues to contribute valuable insights to the scientific community.

๐ŸŒ Impact and Influence

Through his academic journey and research, Koagne Longpa Tamo Silas has influenced the way automation and artificial intelligence are integrated into medical physics. His work in digital electronics and microcontroller programming is paving the way for innovative solutions in the medical field. His contributions extend beyond research, as he actively engages with students and researchers, fostering a culture of knowledge-sharing and scientific exploration.

 

Publication

  • A High-Resolution Non-Volatile Floating Gate Transistor Memory Cell for On-Chip Learning in Analog Artificial Neural Networks
    Authors: KLT Silas, DTA Bernard, FT Bernard, L Jean-Pierre, GW Ejuh
    Year: 2025

 

  • Breast Cancer Diagnosis with Machine Learning Using Feed-Forward Multilayer Perceptron Analog Artificial Neural Network
    Authors: B Djimeli-Tsajio Alain, KLT Silas, LT Jean-Pierre, N Thierry, GW Ejuh
    Year: 2024

 

  • Design and Implementation of a Digital Breath Alcohol Detection System with SMS Alert and Vehicle Tracking on Google Map
    Author: KLT Silas
    Year: 2020

 

  • Design and Realization of an Electronic Attendance System Based on RFID with an Automatic Door Unit
    Author: MK Jules
    Year: 2018

 

๐ŸŽฏ Conclusion

With a vision to transform medical physics through automation and AI-driven technologies, Koagne Longpa Tamo Silas is on a path to making significant contributions to healthcare innovation. His passion, dedication, and expertise ensure that his research will continue to shape the future of medical technology, leaving a lasting impact on both academia and practical applications in the field.

 

Saba Hesaraki | Neurotechnology | Best Researcher Award

Ms. Saba Hesaraki | Neurotechnology | Best Researcher Award

Ms. Saba Hesaraki,ย  Islamic Azad University science and research branch, Iran.

Saba Hesaraki is a computer engineer specializing in artificial intelligence (AI), particularly in medical imaging and generative AI. She holds a Masterโ€™s degree in Computer Engineering from Islamic Azad University, Science and Research Branch, Tehran, where her thesis focused on breast cancer image segmentation using an improved 3D U-Net++ model. She has a strong academic background with high GPAs in both her bachelor’s and master’s programs.

Profile

Google Scholar

๐ŸŒฑ Early Academic Pursuits

Saba Hesaraki embarked on her academic journey with a deep passion for computer engineering, earning her Bachelor of Science in Software Engineering from Islamic Azad University, West Tehran Branch. With an outstanding GPA of 17.22 out of 20.0, she demonstrated an early inclination toward problem-solving and artificial intelligence. Her intellectual curiosity and commitment to innovation led her to pursue a Masterโ€™s degree in the same domain at Islamic Azad University, Science and Research Branch, Tehran. Her thesis, titled “Segmentation of Breast Cancer Images Using Improved 3D U-Net++ Model,” under the supervision of Dr. Maryam Rastgarpour, showcases her dedication to advancing medical imaging technologies through AI-driven solutions. With an exceptional GPA of 18.12 out of 20.0, her academic excellence laid the foundation for a remarkable research career.

๐Ÿ’ผ Professional Endeavors

Sabaโ€™s professional journey reflects her deep expertise in artificial intelligence, particularly in the realms of generative AI and medical imaging. She has worked remotely in various esteemed organizations, contributing her skills to groundbreaking AI projects. Her role as a Generative AI Engineer at Care Vox in Mountain View, California, and Nexus in San Jose, California, enabled her to develop innovative AI-driven solutions. Prior to this, she made significant contributions as a Computer Vision Engineer at Koga Studio and the Quantitative MR Imaging and Spectroscopy Group in Tehran. Her engagement as an NLP Researcher at Asr Gooyesh Pardaz further showcases her versatility in the field of AI. Through these roles, she has gained profound experience in AI-based medical diagnostics, image segmentation, and sustainable AI development, paving the way for impactful innovations.

๐Ÿ“š Contributions and Research Focus

As a dedicated researcher, Sabaโ€™s work has revolved around the intersection of AI and healthcare, particularly medical image segmentation and generative AI applications. Her research interests extend to AI-driven personalized medicine and sustainable AI solutions. She has co-authored multiple research papers, including “Capsule Fusion for Extracting Psychiatric Stressors for Suicide from Twitter” and “UNet++ and LSTM Combined Approach for Breast Ultrasound Image Segmentation.” Her work reflects a keen interest in leveraging AI to solve complex medical challenges, from cancer detection to mental health analysis. Her research on classifying 3D point cloud objects using hybrid neural networks also highlights her multidisciplinary expertise.

๐Ÿ† Accolades and Recognition

Sabaโ€™s dedication to AI research has been recognized through her academic achievements and professional contributions. Her IELTS score of 7.5 and GRE score of 332 underscore her strong analytical and communication skills, essential for global collaboration in AI research. Her research papers have been under review and submission in reputable scientific journals, further solidifying her presence in the AI and medical imaging research community. The recognition she has garnered through collaborations and innovative contributions establishes her as an influential figure in AI-driven healthcare solutions.

๐ŸŒ Impact and Influence

Sabaโ€™s work extends beyond research, as she actively contributes to the global AI community by developing cutting-edge AI applications for real-world problems. Her role in AI for sustainable development and AI-driven personalized medicine signifies her commitment to leveraging technology for societal benefit. Her experience in deep learning frameworks like PyTorch and Keras, along with her expertise in machine learning algorithms, has allowed her to shape AI-driven healthcare innovations that have the potential to save lives and enhance medical diagnostics. Through collaborations and mentorship, she inspires the next generation of AI researchers to push the boundaries of technological advancements.

๐Ÿš€ Legacy and Future Contributions

As an AI researcher and engineer, Saba continues to drive innovation in medical imaging and generative AI. Her aspirations include advancing AI methodologies for early disease detection, improving healthcare accessibility through AI-driven solutions, and fostering AI applications in sustainable development. Her ability to blend technical expertise with a deep understanding of healthcare challenges positions her as a leader in the field. With a promising future ahead, she remains dedicated to exploring new AI frontiers that will revolutionize medical imaging, AI ethics, and beyond.

Publication

Title: A Comprehensive Analysis on Machine Learning based Methods for Lung Cancer Level Classification
Authors: S. Farshchiha, S. Asoudeh, M.S. Kuhshuri, M. Eisaeid, M. Azadie, S. Hesaraki
Year: 2025

Title: Breast Cancer Ultrasound Image Segmentation Using Improved 3D Unet++
Authors: S. Hesaraki, A.S. Mohammed, M. Eisaei, R. Mousa
Year: 2025

Title: BERTCaps: BERT Capsule for Persian Multi-Domain Sentiment Analysis
Authors: M. Memari, S.M. Nejad, A.P. Rabiei, M. Eisaei, S. Hesaraki
Year: 2024

Title: UNet++ and LSTM Combined Approach for Breast Ultrasound Image Segmentation
Authors: S. Hesaraki, M. Akbari, R. Mousa
Year: 2024

Title: Classifying Objects in 3D Point Clouds Using Recurrent Neural Network: A GRU LSTM Hybrid Approach
Authors: R. Mousa, M. Khezli, M. Azadi, V. Nikoofard, S. Hesaraki
Year: 2024

Title: CapsF: Capsule Fusion for Extracting Psychiatric Stressors for Suicide from Twitter
Authors: M.A. Dadgostarnia, R. Mousa, S. Hesaraki
Year: 2024

Conclusion

Saba Hesaraki is a highly skilled and motivated AI engineer with a strong academic and research background in medical imaging and generative AI. Her experience across various AI-driven projects, coupled with technical expertise in deep learning and computer vision, positions her as a valuable contributor to the field. With multiple publications and collaborations in AI and machine learning, she continues to make significant advancements in healthcare applications using AI.