Xin He | Nanomaterials and Nanodevices | Best Researcher Award 

Dr. Xin He | Nanomaterials and Nanodevices | Best Researcher Award

Dr. Xin He, Yunnan Normal University, China.

Xin he, serving as a teaching secretary at yunnan normal university, has made significant contributions to the field of low-dimensional materials and their applications in electronic and optoelectronic devices. with a strong academic foundation and a research focus on first-principles calculations combined with the non-equilibrium green’s function, xin explores material behaviors at nanoscale levels. balancing professional endeavors with impactful research, xin he continues to influence technological advancements while fostering innovation and academic growth within the university environment.

 

profile

Orcid

✨ Early academic pursuits

Xin he’s academic journey began with a profound curiosity for materials science and its applications in technology. during their early studies, xin developed a keen interest in understanding the fundamental properties of materials, driven by a solid foundation in physics and engineering. this passion led to a commitment to exploring how materials interact at the atomic level, setting the stage for future research endeavors.

🔬 Professional endeavors

As the teaching secretary at yunnan normal university, xin he plays an integral role in academic administration while actively contributing to research. balancing organizational responsibilities and academic pursuits, xin has created a unique space where administration supports innovation and student growth. the role highlights xin’s dedication to both education and research excellence.

💡 Contributions and research focus

Xin he’s primary research lies in exploring low-dimensional materials and their applications in electronic and optoelectronic devices. using first-principles calculations combined with the non-equilibrium green’s function, xin investigates the behavior of materials at nanoscale dimensions. these groundbreaking studies aim to enhance electronic device efficiency and unlock new opportunities in optoelectronic technologies, addressing key challenges in the technological field.

🏆 Accolades and recognition

Through consistent dedication to research, xin has earned recognition for significant contributions to material science and device engineering. while accolades often remain understated, xin’s meticulous work and research methodology have received appreciation within academic circles and among peers at yunnan normal university.

🌍 Impact and influence

Xin he’s work has laid a strong foundation for understanding low-dimensional materials and their real-world applications. by contributing insights into material behavior in advanced devices, xin’s research influences technological advancements that bridge the gap between theory and practical innovation. this research not only impacts the scientific community but also inspires students and aspiring researchers to delve into material sciences.

🚀 Legacy and future contributions

looking ahead, xin aims to continue exploring emerging materials and technologies, driving advancements in electronic and optoelectronic devices. xin’s focus on low-dimensional materials holds immense promise for future breakthroughs, fostering innovations that could revolutionize industries and reshape how technology interacts with the environment.

📚 Commitment to education and research

At yunnan normal university, xin he exemplifies a harmonious balance between research and teaching administration. by encouraging students to engage in research-driven learning and upholding institutional excellence, xin ensures the future generation benefits from a supportive and inspiring academic environment.

📚 Publications

  • Tunable interface properties of Janus MoSi₂N₂P₂/graphene van der Waals heterostructure: Implications for electronic and optoelectronic devices
    Authors: Mengshi Dai, Lianmeng Yu, Xiaobo Feng, Qianjin Wang, Xin He
    Year: 2024

 

  • Achieving real Ohmic contact by the dual protection of outer layer atoms and surface functionalization in 2D metal Mxenes/MoSi₂N₄ heterostructures
    Authors: X. He, Wenzhong Li, Z. Gao, Z. Zhang, Yao He
    Year: 2023

 

  • Simulation studies on robust contacts in V₂CT₂/MoSi₂N₄ (T═O, F, OH) van der Waals heterojunction nanostructures: Implications for optoelectronic devices
    Authors: Xin He, Zhen Gao, Zhenhua Zhang, Kai Xiong, Yao He
    Year: 2023

 

  • Electronic and optical properties and device applications for antimonene/WS₂ van der Waals heterostructure
    Authors: X. He, X.Q. Deng, L. Sun, Z.H. Zhang, Z.Q. Fan
    Year: 2022

 

  • Geometry, induced magnetism and modified electronic behaviors for magnetic atom adsorption on antimonene nanotubes
    Authors: X. He, Zhiqiang Fan, Z. Zhang
    Year: 2020

 

Conclusion

Xin he’s work exemplifies a commitment to advancing material science through groundbreaking research and practical applications. by exploring the untapped potential of low-dimensional materials, xin not only addresses modern technological challenges but also inspires future researchers. with a legacy of dedication to both education and scientific discovery, xin he stands as a pillar of academic excellence, shaping the future of electronic and optoelectronic device innovation.

 

Chen Wang | neural network application | Best Researcher Award

Prof Dr.Chen Wang | neural network application | Best Researcher Award

Prof Dr Chen Wang School of Mining, Guizhou University China

Wang Chen is a distinguished professor at Guizhou University, specializing in mining engineering and resources and environment. He holds a PhD from the China University of Mining and Technology and has significant expertise in mining methods, rock mechanics, mining system engineering, and the kinematic behavior of rock layers in karst regions.

profile

scopus

📚 Recruitment Discipline Direction

Mining Engineering, Resources and Environment

🔬 Main Research Fields and Directions

Mining Methods,Rock Mechanics,Mining System Engineering,Roadway Support,Kinematic Mechanisms of Rock Layers in Karst Mountainous Areas.

💼 Key Research Projects (2018 – Present)

National Natural Science Foundation General Project (52174072)“Study on the Mechanisms of Rock Layer Movement under Repeated Mining in Karst Mountainous Areas,” 2022.01-2025.12, 580,000 RMB, Principal Investigator, ongoing. 💰National Natural Science Foundation Youth Science Fund Project (51904081)“Study on the Mechanisms of Instability Induced by Mining in Shallowly Buried Coal Layers in Karst Terrain,” 2020.01-2022.12, 240,000 RMB, Principal Investigator, ongoing. 🔍

✍️ Journal Articles:

Wang Chen et al. “An Expert System for Equipment Selection of Thin Coal Seam Mining.” (2019) .Wang Chen et al. “Optimal Selection of a Longwall Mining Method for a Thin Coal Seam Working Face.” (2016) .Wang Chen, Zhou Jie. “New Advances in Automatic Shearer Cutting Technology.” (2021) ⚙️

🥇 Achievements

Patents: 5 granted invention patents related to coal mining technology. Awards: Multiple research awards for contributions to mining technology. 🏆

📚 Publications

  1. Title: Study on strength prediction and strength change of Phosphogypsum-based composite cementitious backfill based on BP neural network
    Authors: Wu, M., Wang, C., Zuo, Y., Zhang, J., Luo, Y.
    Year: 2024
    Journal: Materials Today Communications
    Volume: 41
    Article Number: 110331

 

  1. Title: Correction: Determination of working resistance of support parameter variation of large mining height support: the case of Caojiatan coal mine
    Authors: Xue, B., Zhang, W., Wang, C.
    Year: 2024
    Journal: Geomechanics and Geophysics for Geo-Energy and Geo-Resources
    Volume: 10
    Issue: 1
    Pages: 14

 

  1. Title: Determination of working resistance of support parameter variation of large mining height support: the case of Caojiatan coal mine
    Authors: Xue, B., Zhang, W., Wang, C.
    Year: 2024
    Journal: Geomechanics and Geophysics for Geo-Energy and Geo-Resources
    Volume: 10
    Issue: 1
    Pages: 1

 

  1. Title: Evolution of Broken Coal’s Permeability Characteristics under Cyclic Loading–Unloading Conditions
    Authors: Luo, L., Zhang, L., Pan, J., Wang, C., Li, S.
    Year: 2024
    Journal: Natural Resources Research
    Volume: 33
    Issue: 5
    Pages: 2279–2297

 

  1. Title: Preparation and characterization of green lignin modified mineral cementitious firefighting materials based on uncalcined coal gangue and coal fly ash
    Authors: Dou, G., Wang, C., Zhong, X., Qin, B.
    Year: 2024
    Journal: Construction and Building Materials
    Volume: 435
    Article Number: 136799

 

  1. Title: Mining Technology Evaluation for Steep Coal Seams Based on a GA-BP Neural Network
    Authors: Li, X., Wang, C., Li, C., Luo, Y., Jiang, S.
    Year: 2024
    Journal: ACS Omega
    Volume: 9
    Issue: 23
    Pages: 25309–25321

 

  1. Title: Capturing rate- and temperature-dependent behavior of concrete using a thermodynamically consistent viscoplastic-damage model
    Authors: Tao, J., Yang, X.-G., Lei, Y., Wang, C.
    Year: 2024
    Journal: Construction and Building Materials
    Volume: 422
    Article Number: 135791

Conclusion

Wang Chen’s extensive research and numerous publications significantly contribute to the field of mining engineering. His focus on the complexities of karst geology and the development of intelligent mining technologies positions him as a leader in advancing mining safety and efficiency. His ongoing projects reflect a commitment to addressing contemporary challenges in the mining sector, particularly in relation to environmental sustainability and resource management.