BaomanLi| Neuroanatomy | Best Researcher Award

Prof. BaomanLi| Neuroanatomy| Best Researcher Award

Prof . Baoman Li, China Medical University, China.

Dr. Baoman Li is a distinguished neuroscientist and forensic toxicologist whose academic and professional journey spans advanced pharmacological research and impactful discoveries in brain science. With a Ph.D. from China Medical University and postdoctoral training in the U.S., he has built a career rooted in scientific excellence and innovation. His pioneering research—ranging from CSF transport mechanisms to neuronal excitability and circadian-based psychiatric models—has been published in leading journals. As a professor and department director, he also contributes through scholarly leadership, editorial work, and mentorship, strengthening the foundation of neuroglial and toxicological research

Profile

 

Early Academic Pursuits

Dr. Baoman Li’s academic journey began with a strong foundation in medical pharmacology, culminating in a Ph.D. from China Medical University. His early academic years were marked by a keen interest in the complex interactions between drugs and neural function, particularly within the central nervous system. Motivated by a curiosity about how neurochemical pathways influence behavior and mental health, Dr. Li pursued rigorous scientific training and research, laying the groundwork for a future at the forefront of forensic toxicology and neuropharmacology.

Professional Endeavors

Following his doctoral studies, Dr. Li expanded his academic horizons as a postdoctoral researcher at the University of Rochester Medical Center in the United States from 2013 to 2014. There, he collaborated on cross-disciplinary studies, refining his expertise in neurobiology and toxicological mechanisms. Returning to China, he assumed the role of Professor and Department Director of the Forensic Analytical Toxicology Department at China Medical University. In this position, he has led numerous high-impact research initiatives, while mentoring emerging scientists and guiding departmental development.

🧠 Contributions and Research Focus

Dr. Li’s research has contributed significantly to our understanding of the brain’s physiological and pathological processes. His recent studies have been particularly groundbreaking. He identified a previously unknown ependymal cell-mediated pathway responsible for transporting cerebrospinal fluid (CSF) from the central nervous system to peripheral organs, published in PNAS in 2024. Another major discovery, published in Cell Metabolism in 2025, revealed the role of the norepinephrine–free fatty acid–Na⁺/K⁺-ATPase axis in regulating neuronal hyperexcitability and behavioral arousal. Furthermore, his 2023 work in Molecular Psychiatry introduced a novel circadian disruption-induced manic mouse model, offering new tools for bipolar disorder research.

📚 Scholarly Contributions and Thought Leadership

Beyond laboratory discoveries, Dr. Li has demonstrated scholarly leadership through his editorial work on three comprehensive books focusing on neuroglial functions and dysfunctions. These editorial endeavors reflect his deep engagement with the academic community and his commitment to synthesizing and disseminating cutting-edge knowledge. His work bridges pharmacology, neuroscience, and psychiatry, reinforcing his reputation as a thought leader in the multidisciplinary domain of brain science and mental health.

🏅 Accolades and Recognition

Dr. Li’s scientific rigor and innovative research have earned him national and international recognition. His publications in high-impact journals have attracted attention from global neuroscientific communities, affirming the relevance and importance of his findings. As a respected academic, he frequently contributes to peer-reviewed journals and serves as a reviewer and collaborator across multiple institutions, further highlighting his expertise and integrity as a scientist.

🌍 Impact and Influence

Through his research, Dr. Li has had a significant impact on the fields of forensic toxicology, neuropharmacology, and psychiatric disorder modeling. His identification of critical neural pathways and behavioral mechanisms has implications for both clinical practice and basic science. His collaborative work continues to influence ongoing studies in neuroscience and mental health treatment strategies, and his mentorship of students ensures that his influence extends to future generations of researchers.

🔬 Legacy and Future Contributions

As Dr. Baoman Li continues his work, he remains committed to pushing the boundaries of forensic neuroscience and neuropharmacology. With a legacy rooted in innovation, academic excellence, and cross-disciplinary exploration, his future contributions are expected to further transform our understanding of brain function and disease. By integrating analytical toxicology with behavioral neuroscience, Dr. Li aims to develop novel diagnostic and therapeutic approaches that could benefit public health on a global scale.

🧾 Conclusion

Through decades of dedication, Dr. Baoman Li has emerged as a transformative figure in the intersecting fields of neuropharmacology, forensic toxicology, and psychiatric neuroscience. His work not only enhances scientific understanding but also opens new avenues for diagnosis and treatment of complex neurological and psychological disorders. As he continues to lead cutting-edge research and mentor the next generation, his influence will persist—shaping the future of brain health and forensic science across global academic and clinical landscapes.

Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li, China Medical University,  China.

Professor Baoman Li stands at the forefront of contemporary neuroscience and pharmacology, merging deep academic knowledge with impactful translational research. From his foundational training at China Medical University to his postdoctoral work in the United States, he has consistently demonstrated excellence in exploring the physiological and molecular mechanisms of the central nervous system. Currently a Professor and Department Director, his work has revealed novel insights into cerebrospinal fluid transport, neuronal excitability regulation, and bipolar disorder modeling. These discoveries have been featured in top-tier journals such as PNAS, Cell Metabolism, and Molecular Psychiatry.

Profile

Scopus

🎓 Early Academic Pursuits

Baoman Li’s journey into the world of biomedical science began with a strong academic foundation. He pursued his Ph.D. in Medical Pharmacology at China Medical University, where he cultivated a keen interest in the intersection of neuroscience, pharmacology, and toxicology. His early research provided him with an in-depth understanding of neural mechanisms and laid the groundwork for his future innovations. Eager to expand his international experience, he furthered his postdoctoral research at the University of Rochester Medical Center (USA) from 2013 to 2014, where he deepened his expertise in neuropharmacological research.

🧪 Professional Endeavors

Currently serving as a Professor and Department Director at the Forensic Analytical Toxicology Department of China Medical University, Professor Li leads a dynamic team of researchers and scholars. His leadership has not only enhanced academic standards within the department but has also positioned it as a center of excellence in the field of neuroglial research and forensic toxicology. His multidisciplinary approach merges analytical science with neuroscience, significantly advancing our understanding of central nervous system (CNS) function and dysfunction.

🧠 Contributions and Research Focus

Professor Li’s research focuses on cutting-edge discoveries related to neural mechanisms, cerebrospinal fluid dynamics, and neuropsychiatric disorders. One of his landmark studies, published in PNAS (2024), identified ependymal cell-mediated cerebrospinal fluid transport from the CNS to peripheral organs, revealing a critical physiological communication pathway. In another pivotal contribution in Cell Metabolism (2025), he elucidated the role of the NE-FFA-Na⁺/K⁺-ATPase pathway in regulating neuronal hyperexcitability and behavioral arousal. Moreover, his groundbreaking development of a circadian disruption-induced manic mouse model for bipolar disorder research (published in Molecular Psychiatry, 2023) has provided a valuable tool for studying mood disorders and developing new therapeutic approaches.

📚 Academic Publications and Editorial Work

With an impressive academic portfolio, Professor Li has authored and edited three influential books centered on neuroglial science, expanding the literature in this specialized domain. His published works include notable titles with ISBNs: 978-7-117-34321-3, 978-3-030-77375-5, and 978-2-88963-497-2. These contributions serve as essential resources for both emerging and seasoned neuroscientists, offering detailed insights into glial biology, neurochemical interactions, and translational research.

🏅 Accolades and Recognition

Professor Li’s scholarly excellence is widely recognized, as reflected in his H-index of 34 and a total citation count of 3,530 according to Web of Science. His ability to consistently produce high-impact research has made him a respected voice in neuroscience and pharmacology. He has successfully led eight research projects funded by prestigious bodies such as the Natural Science Foundation of China and the Ministry of Education, while also currently heading two additional projects supported by the provincial science foundation.

🤝 Industry and Consultancy Impact

Beyond academic circles, Professor Li has extended his expertise into practical applications through four consultancy projects, bridging the gap between research and real-world forensic or pharmaceutical needs. His ability to translate complex neuropharmacological findings into actionable insights for the industry underscores his role as not only a theorist but also a problem-solver and innovator.

🔬 Legacy and Future Contributions

As a scientist, educator, and leader, Professor Baoman Li continues to shape the future of neuroscience and pharmacological toxicology. His ongoing research and collaborative efforts are expected to yield further breakthroughs in understanding brain-behavior relationships and disease mechanisms. With a legacy already marked by innovation and impact, his future contributions promise to enhance diagnostics, treatments, and preventive strategies for neurological and psychiatric disorders. His commitment to mentoring young scholars and editing academic literature ensures that his influence will resonate across generations of researchers to come.

Publication

  • Title: Cerebrospinal Fluid Enters Peripheral Organs by Spinal Nerves Supporting Brain–Body Volume Transmission
    Authors: Li, Baoman; Xia, Maosheng; Harkany, Tibor; Verkhratsky, Alexei N.
    Year: Not specified (likely 2024 or 2025)

 

  • Title: Anti-seizure effects of norepinephrine-induced free fatty acid release
    Authors: Li, Baoman; Sun, Qian; Ding, Fengfei; Smith, Nathan A.; Nedergaard, Maiken
    Year: 2025
    Journal: Cell Metabolism

 

  • Title: Major depressive disorder: hypothesis, mechanism, prevention and treatment
    Authors: Cui, Lulu; Li, Shu; Wang, Siman; Xia, Maosheng; Li, Baoman
    Year: Not specified (likely 2024 or 2025)
    Type: Review (Open access)

 

  • Title: The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs
    Authors: Li, Xinyu; Wang, Siman; Zhang, Dianjun; Xia, Maosheng; Li, Baoman
    Year: 2024
    Journal: Proceedings of the National Academy of Sciences of the USA (Open access)

 

  • Title: Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice
    Authors: Wang, Shuying; Yu, Xiaojin; Cheng, Lili; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Cell Death and Disease (Open access)

 

  • Title: Ketamine administration causes cognitive impairment by destroying the circulation function of the glymphatic system
    Authors: Wu, Xue; Wen, Gehua; Yan, Lei; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Biomedicine and Pharmacotherapy (Open access)

 

  • Title: Correction to: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology (Erratum, Open access)

 

  • Title: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology

 

  • Title: Trace metals and astrocytes physiology and pathophysiology
    Authors: Li, Baoman; Yu, Weiyang; Verkhratsky, Alexei N.
    Year: 2024
    Journal: Cell Calcium

 

Conclusion:

Dr. Baoman Li is a strong and deserving candidate for the Best Researcher Award. His innovative research, publication in high-impact journals, and interdisciplinary contributions demonstrate excellence and sustained scientific productivity. While he can enhance his visibility and further define his leadership role, his current achievements are more than sufficient to merit this prestigious recognition.

 

Takeshi Sakurai | Neuroanatomy | Best Researcher Award

Prof. Dr. Takeshi Sakurai | Neuroanatomy | Best Researcher Award

Prof. Dr. Takeshi Sakurai, University of Tsukuba, Japan.

Takeshi Sakurai, M.D., Ph.D., is a distinguished academic whose career spans across key positions in neuroscience, pharmacology, and integrative sleep medicine. After earning his M.D. and Ph.D. from the University of Tsukuba, he embarked on a journey of groundbreaking research, primarily focusing on neurotransmission and sleep regulation. Sakurai’s postdoctoral work in prestigious institutions, coupled with his leadership of major projects like the Yanagisawa Orphan Receptor Project, established him as a leader in molecular neuroscience. Over the years, he has earned recognition through accolades and significant academic positions, including his current role as Professor and Vice Director at the University of Tsukuba’s International Institute for Integrative Sleep Medicine. His research continues to shape the understanding of sleep and brain function, while his influence extends to mentoring the next generation of scientists.

Profile

Google Scholar

Early Academic Pursuits 📚


Takeshi Sakurai’s academic journey began with his medical studies at the University of Tsukuba, where he earned his M.D. in 1989. During his early years at the university, he developed a keen interest in the molecular mechanisms of biological systems. This curiosity led him to pursue a Ph.D. in medicine, which he completed in 1993. His doctoral research focused on the cloning of a cDNA encoding a non-isopetide-selective subtype of the endothelin receptor, a project that was published in Nature in 1990, marking the beginning of his significant contributions to molecular pharmacology.

Professional Endeavors 👨‍⚕️


Following his Ph.D., Sakurai embarked on a promising career in academic research, starting as a postdoctoral fellow at the Institute of Basic Medical Sciences in 1993. His career rapidly advanced as he took on various roles, including Assistant Professor at the same institute. During his tenure, he also worked as a postdoctoral fellow at the prestigious Howard Hughes Medical Institute at the University of Texas Southwestern Medical Center in Dallas from 1995 to 1996. These experiences broadened his expertise in pharmacology and molecular neuroscience, laying the foundation for his future academic leadership roles. By 1999, he became an Associate Professor at the University of Tsukuba and contributed significantly to the university’s research landscape.

Contributions and Research Focus 🧬


Sakurai’s research is primarily centered around molecular neuroscience, pharmacology, and integrative physiology. His work has been pivotal in advancing the understanding of biological systems and their regulation at the molecular level. Notably, his leadership of the Yanagisawa Orphan Receptor Project under the Exploratory Research for Advanced Technology (ERATO) of the Japan Science and Technology Corporation highlights his role in pioneering research on orphan receptors. His continued focus on the mechanisms of neurotransmission and their involvement in sleep regulation has earned him a place as a leading researcher in the field of integrative sleep medicine.

Accolades and Recognition 🏆


Throughout his career, Sakurai has earned widespread recognition for his contributions to medicine and neuroscience. His groundbreaking work on neurotransmitter systems and sleep regulation has led to his appointment as a Professor and Vice Director at the University of Tsukuba’s International Institute for Integrative Sleep Medicine. His research has not only shaped the scientific community’s understanding of brain function but also garnered him numerous accolades, further cementing his reputation as a thought leader in the field.

Impact and Influence 🌍


Sakurai’s impact extends far beyond his own research. As a professor, he has mentored countless students and researchers who have gone on to make their own significant contributions in the fields of neuroscience and pharmacology. His interdisciplinary approach to sleep medicine has influenced research on neurodegenerative diseases, mental health, and drug development. The work he has pioneered in molecular neuroscience has also paved the way for advances in treatment approaches for disorders related to sleep and neurotransmission, offering hope for improved therapeutic interventions.

Legacy and Future Contributions 🔬


Looking ahead, Sakurai’s legacy in neuroscience and integrative sleep medicine is poised to continue influencing both academic research and clinical practice. His innovative research on sleep regulation and the molecular mechanisms underpinning brain function will undoubtedly remain foundational in the future of both basic and applied medical sciences. As he continues his work at the University of Tsukuba, Sakurai’s future contributions will likely expand our understanding of the brain’s intricate systems and their broader implications for human health. His career exemplifies a dedication to advancing science, and his ongoing research promises to address critical challenges in medicine and health.

Academic Leadership and Mentorship 🎓


In addition to his personal research achievements, Sakurai’s role in academic leadership cannot be understated. As a professor at the University of Tsukuba, he has played a pivotal role in shaping the institution’s research direction and academic programs, particularly within the fields of integrative physiology and sleep medicine. His influence extends through the mentorship of students, guiding the next generation of researchers who will continue to build on his work. Sakurai’s commitment to education and his support for innovative research initiatives are key to his lasting impact on the academic and medical communities.

Publication

  • Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior
    Authors: T Sakurai, A Amemiya, M Ishii, I Matsuzaki, RM Chemelli, H Tanaka, …
    Year: 1998

 

  • Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor
    Authors: T Sakurai, M Yanagisawa, Y Takuwat, H Miyazakit, S Kimura, K Goto, …
    Year: 1990

 

  • Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity
    Authors: J Hara, CT Beuckmann, T Nambu, JT Willie, RM Chemelli, CM Sinton, …
    Year: 2001

 

  • Autism genome-wide copy number variation reveals ubiquitin and neuronal genes
    Authors: JT Glessner, K Wang, G Cai, O Korvatska, CE Kim, S Wood, H Zhang, …
    Year: 2009

 

  • The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness
    Author: T Sakurai
    Year: 2007

 

  • Distribution of orexin neurons in the adult rat brain
    Authors: T Nambu, T Sakurai, K Mizukami, Y Hosoya, M Yanagisawa, K Goto
    Year: 1999

 

  • Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems
    Authors: Y Date, Y Ueta, H Yamashita, H Yamaguchi, S Matsukura, K Kangawa, …
    Year: 1999

 

  • Hypothalamic orexin neurons regulate arousal according to energy balance in mice
    Authors: A Yamanaka, CT Beuckmann, JT Willie, J Hara, N Tsujino, M Mieda, …
    Year: 2003

 

  • Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method
    Authors: Y Yamada, N Yoshimura, T Sakurai
    Year: 1968

 

  • Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area
    Authors: CF Elias, CB Saper, E Maratos‐Flier, NA Tritos, C Lee, J Kelly, JB Tatro, …
    Year: 1998

 

Conclusion


Takeshi Sakurai’s work has profoundly impacted the fields of neuroscience, pharmacology, and sleep medicine. His contributions have not only advanced scientific understanding but have also paved the way for practical applications in medical therapies. Through his leadership and mentorship, Sakurai’s legacy is set to endure, with his future research promising further advancements in understanding the complexities of the brain and its regulation. His dedication to advancing both science and education ensures that his influence will continue to resonate in academic and clinical circles for years to come.