Francisco Mena | Computational Neuroscience | Best Researcher Award

Mr. Francisco Mena | Computational Neuroscience | Best Researcher Award

Mr. Francisco Mena, University of Kaiserslautern-Landau, Germany.

Francisco Mena is a dynamic researcher in the field of machine learning, currently pursuing a PhD at the University of Kaiserslautern-Landau (RPTU), Germany. His academic roots trace back to Federico Santa María Technical University (UTFSM) in Chile, where he developed a strong foundation in computer engineering and data science. With a specialization in unsupervised learning, deep learning, and multi-view data fusion, his work focuses on building robust and scalable models that minimize human intervention and adapt to incomplete or noisy datasets—particularly in the context of Earth observation and crowdsourced data. He has worked across international research institutes like DFKI in Germany and Inria in France, contributing to global advancements in AI and data science. His teaching and mentoring roles, combined with his innovative research, mark him as a rising contributor to the future of intelligent systems.

Profile

Google Scholar
Scopus
Orcid

 

🎓 Early Academic Pursuits

Francisco Mena’s academic journey began with a strong foundation in computer engineering at Federico Santa María Technical University (UTFSM) in Chile. Demonstrating exceptional academic performance, he ranked in the top 10% of his class, securing the 4th position among 66 students. He pursued an integrated path that led him to obtain a Bachelor of Science, a Licenciado, and later the Ingeniería Civil en Informática degree. Driven by curiosity and a passion for machine learning, he transitioned seamlessly into postgraduate studies, earning a Magíster en Ciencias de la Ingeniería Informática at UTFSM. His master’s thesis, focused on mixture models in crowdsourcing scenarios, set the stage for his growing interest in unsupervised learning and probabilistic models.

💼 Professional Endeavors

Alongside his studies, Francisco actively engaged in diverse professional roles that enriched his technical and academic expertise. He served as a research assistant at the Chilean Virtual Observatory (CHIVO), contributing to astroinformatics projects by processing and organizing astronomical datasets from ALMA and ESO observatories. His early professional stint as a front-end and back-end developer provided him with hands-on industry experience. In academia, he held several teaching roles, progressing from laboratory assistant to lecturer in key courses such as computational statistics, artificial neural networks, and machine learning. Currently, as a Student Research Assistant at the German Research Centre for Artificial Intelligence (DFKI), he contributes to Earth observation projects, enhancing models for crop yield prediction using multi-view data.

🔬 Contributions and Research Focus

Francisco’s research is anchored in machine learning with a special emphasis on unsupervised learning, deep neural architectures, multi-view learning, and data fusion. His doctoral work at University of Kaiserslautern-Landau (RPTU) focuses on handling missing views in Earth observation data, an increasingly important issue in remote sensing. He explores innovative methods that challenge traditional domain-specific models by advocating for approaches that minimize human intervention and labeling. His core research areas include autoencoders, deep clustering, dimensionality reduction, and latent variable modeling, with applications extending to vegetation monitoring, neural information retrieval, and crowdsourcing.

🌍 Global Collaborations

Francisco’s commitment to impactful research is evident in his international collaborations. In addition to his work in Germany, he undertook a research visit to Inria in Montpellier, France, where he explored cutting-edge topics such as multi-modal co-learning, multi-task learning, and mutual distillation. These collaborations allow him to expand the practical relevance of his research across geographical and disciplinary boundaries, contributing to global discussions in artificial intelligence and data science.

🧠 Impact and Influence

Through his extensive academic involvement, Francisco has shaped the understanding of machine learning models that are both scalable and adaptable to real-world challenges. His contributions in crowdsourcing, particularly the use of latent group variable models for large-scale annotations, reflect his commitment to developing resource-efficient models. His influence extends into education, where he has mentored students and shaped curriculum delivery in machine learning-related subjects. By leveraging tools like PyTorch, QGIS, and Slurm, he ensures his work remains at the cutting edge of technological advancement.

🏆 Recognition and Growth

Francisco’s academic excellence is evident from his consistent achievements and recognition. His GPA of 94% during his master’s program stands as a testament to his dedication and intellect. Being ranked #4 in his undergraduate program highlights his sustained academic brilliance. His teaching roles at UTFSM and lecturing at RPTU further underscore the trust institutions place in his knowledge and teaching abilities.

🚀 Legacy and Future Contributions

With a clear research vision and a strong international presence, Francisco Mena is poised to leave a lasting impact in the field of artificial intelligence, particularly in unsupervised learning and Earth observation. His focus on reducing dependency on human intervention, increasing model generalizability, and handling incomplete or noisy data reflects a future-forward approach. As his doctoral journey progresses, he is expected to continue influencing how machine learning models are conceptualized, designed, and deployed in real-world applications—especially those that require scalable, domain-agnostic solutions.

Publication

 

  • Harnessing the power of CNNs for unevenly-sampled light-curves using Markov Transition Field – M Bugueño, G Molina, F Mena, P Olivares, M Araya – 2021

 

  • Common practices and taxonomy in deep multiview fusion for remote sensing applications – F Mena, D Arenas, M Nuske, A Dengel – 2024

 

  • A binary variational autoencoder for hashing – F Mena, R Ñanculef – 2019

 

  • Refining exoplanet detection using supervised learning and feature engineering – M Bugueño, F Mena, M Araya – 2018

 

  • Predicting crop yield with machine learning: An extensive analysis of input modalities and models on a field and sub-field level – D Pathak, M Miranda, F Mena, C Sanchez, P Helber, B Bischke, … – 2023

 

  • Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction – F Mena, D Pathak, H Najjar, C Sanchez, P Helber, B Bischke, P Habelitz, … – 2025

 

  • A comparative assessment of multi-view fusion learning for crop classification – F Mena, D Arenas, M Nuske, A Dengel – 2023

 

  • Self-supervised Bernoulli autoencoders for semi-supervised hashing – R Ñanculef, F Mena, A Macaluso, S Lodi, C Sartori – 2021

 

  • Impact assessment of missing data in model predictions for Earth observation applications – F Mena, D Arenas, M Charfuelan, M Nuske, A Dengel – 2024

 

  • Increasing the robustness of model predictions to missing sensors in Earth observation – F Mena, D Arenas, A Dengel – 2024

 

🧩 Conclusion

Driven by curiosity and innovation, Francisco Mena is reshaping the landscape of machine learning through his pursuit of generalizable, efficient, and human-independent models. His research not only addresses technical limitations but also responds to the growing need for AI systems that are adaptable across domains and disciplines. With a solid academic background, global collaborations, and a clear research vision, he is set to make lasting contributions to unsupervised learning and its applications in critical areas like Earth observation and neural information retrieval. As he continues to build on his expertise, his work promises to influence both the academic world and the practical deployment of intelligent systems in complex, real-world scenarios.

Saba Hesaraki | Neurotechnology | Best Researcher Award

Ms. Saba Hesaraki | Neurotechnology | Best Researcher Award

Ms. Saba Hesaraki,  Islamic Azad University science and research branch, Iran.

Saba Hesaraki is a computer engineer specializing in artificial intelligence (AI), particularly in medical imaging and generative AI. She holds a Master’s degree in Computer Engineering from Islamic Azad University, Science and Research Branch, Tehran, where her thesis focused on breast cancer image segmentation using an improved 3D U-Net++ model. She has a strong academic background with high GPAs in both her bachelor’s and master’s programs.

Profile

Google Scholar

🌱 Early Academic Pursuits

Saba Hesaraki embarked on her academic journey with a deep passion for computer engineering, earning her Bachelor of Science in Software Engineering from Islamic Azad University, West Tehran Branch. With an outstanding GPA of 17.22 out of 20.0, she demonstrated an early inclination toward problem-solving and artificial intelligence. Her intellectual curiosity and commitment to innovation led her to pursue a Master’s degree in the same domain at Islamic Azad University, Science and Research Branch, Tehran. Her thesis, titled “Segmentation of Breast Cancer Images Using Improved 3D U-Net++ Model,” under the supervision of Dr. Maryam Rastgarpour, showcases her dedication to advancing medical imaging technologies through AI-driven solutions. With an exceptional GPA of 18.12 out of 20.0, her academic excellence laid the foundation for a remarkable research career.

💼 Professional Endeavors

Saba’s professional journey reflects her deep expertise in artificial intelligence, particularly in the realms of generative AI and medical imaging. She has worked remotely in various esteemed organizations, contributing her skills to groundbreaking AI projects. Her role as a Generative AI Engineer at Care Vox in Mountain View, California, and Nexus in San Jose, California, enabled her to develop innovative AI-driven solutions. Prior to this, she made significant contributions as a Computer Vision Engineer at Koga Studio and the Quantitative MR Imaging and Spectroscopy Group in Tehran. Her engagement as an NLP Researcher at Asr Gooyesh Pardaz further showcases her versatility in the field of AI. Through these roles, she has gained profound experience in AI-based medical diagnostics, image segmentation, and sustainable AI development, paving the way for impactful innovations.

📚 Contributions and Research Focus

As a dedicated researcher, Saba’s work has revolved around the intersection of AI and healthcare, particularly medical image segmentation and generative AI applications. Her research interests extend to AI-driven personalized medicine and sustainable AI solutions. She has co-authored multiple research papers, including “Capsule Fusion for Extracting Psychiatric Stressors for Suicide from Twitter” and “UNet++ and LSTM Combined Approach for Breast Ultrasound Image Segmentation.” Her work reflects a keen interest in leveraging AI to solve complex medical challenges, from cancer detection to mental health analysis. Her research on classifying 3D point cloud objects using hybrid neural networks also highlights her multidisciplinary expertise.

🏆 Accolades and Recognition

Saba’s dedication to AI research has been recognized through her academic achievements and professional contributions. Her IELTS score of 7.5 and GRE score of 332 underscore her strong analytical and communication skills, essential for global collaboration in AI research. Her research papers have been under review and submission in reputable scientific journals, further solidifying her presence in the AI and medical imaging research community. The recognition she has garnered through collaborations and innovative contributions establishes her as an influential figure in AI-driven healthcare solutions.

🌍 Impact and Influence

Saba’s work extends beyond research, as she actively contributes to the global AI community by developing cutting-edge AI applications for real-world problems. Her role in AI for sustainable development and AI-driven personalized medicine signifies her commitment to leveraging technology for societal benefit. Her experience in deep learning frameworks like PyTorch and Keras, along with her expertise in machine learning algorithms, has allowed her to shape AI-driven healthcare innovations that have the potential to save lives and enhance medical diagnostics. Through collaborations and mentorship, she inspires the next generation of AI researchers to push the boundaries of technological advancements.

🚀 Legacy and Future Contributions

As an AI researcher and engineer, Saba continues to drive innovation in medical imaging and generative AI. Her aspirations include advancing AI methodologies for early disease detection, improving healthcare accessibility through AI-driven solutions, and fostering AI applications in sustainable development. Her ability to blend technical expertise with a deep understanding of healthcare challenges positions her as a leader in the field. With a promising future ahead, she remains dedicated to exploring new AI frontiers that will revolutionize medical imaging, AI ethics, and beyond.

Publication

Title: A Comprehensive Analysis on Machine Learning based Methods for Lung Cancer Level Classification
Authors: S. Farshchiha, S. Asoudeh, M.S. Kuhshuri, M. Eisaeid, M. Azadie, S. Hesaraki
Year: 2025

Title: Breast Cancer Ultrasound Image Segmentation Using Improved 3D Unet++
Authors: S. Hesaraki, A.S. Mohammed, M. Eisaei, R. Mousa
Year: 2025

Title: BERTCaps: BERT Capsule for Persian Multi-Domain Sentiment Analysis
Authors: M. Memari, S.M. Nejad, A.P. Rabiei, M. Eisaei, S. Hesaraki
Year: 2024

Title: UNet++ and LSTM Combined Approach for Breast Ultrasound Image Segmentation
Authors: S. Hesaraki, M. Akbari, R. Mousa
Year: 2024

Title: Classifying Objects in 3D Point Clouds Using Recurrent Neural Network: A GRU LSTM Hybrid Approach
Authors: R. Mousa, M. Khezli, M. Azadi, V. Nikoofard, S. Hesaraki
Year: 2024

Title: CapsF: Capsule Fusion for Extracting Psychiatric Stressors for Suicide from Twitter
Authors: M.A. Dadgostarnia, R. Mousa, S. Hesaraki
Year: 2024

Conclusion

Saba Hesaraki is a highly skilled and motivated AI engineer with a strong academic and research background in medical imaging and generative AI. Her experience across various AI-driven projects, coupled with technical expertise in deep learning and computer vision, positions her as a valuable contributor to the field. With multiple publications and collaborations in AI and machine learning, she continues to make significant advancements in healthcare applications using AI.