Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li, China Medical University,  China.

Professor Baoman Li stands at the forefront of contemporary neuroscience and pharmacology, merging deep academic knowledge with impactful translational research. From his foundational training at China Medical University to his postdoctoral work in the United States, he has consistently demonstrated excellence in exploring the physiological and molecular mechanisms of the central nervous system. Currently a Professor and Department Director, his work has revealed novel insights into cerebrospinal fluid transport, neuronal excitability regulation, and bipolar disorder modeling. These discoveries have been featured in top-tier journals such as PNAS, Cell Metabolism, and Molecular Psychiatry.

Profile

Scopus

🎓 Early Academic Pursuits

Baoman Li’s journey into the world of biomedical science began with a strong academic foundation. He pursued his Ph.D. in Medical Pharmacology at China Medical University, where he cultivated a keen interest in the intersection of neuroscience, pharmacology, and toxicology. His early research provided him with an in-depth understanding of neural mechanisms and laid the groundwork for his future innovations. Eager to expand his international experience, he furthered his postdoctoral research at the University of Rochester Medical Center (USA) from 2013 to 2014, where he deepened his expertise in neuropharmacological research.

🧪 Professional Endeavors

Currently serving as a Professor and Department Director at the Forensic Analytical Toxicology Department of China Medical University, Professor Li leads a dynamic team of researchers and scholars. His leadership has not only enhanced academic standards within the department but has also positioned it as a center of excellence in the field of neuroglial research and forensic toxicology. His multidisciplinary approach merges analytical science with neuroscience, significantly advancing our understanding of central nervous system (CNS) function and dysfunction.

🧠 Contributions and Research Focus

Professor Li’s research focuses on cutting-edge discoveries related to neural mechanisms, cerebrospinal fluid dynamics, and neuropsychiatric disorders. One of his landmark studies, published in PNAS (2024), identified ependymal cell-mediated cerebrospinal fluid transport from the CNS to peripheral organs, revealing a critical physiological communication pathway. In another pivotal contribution in Cell Metabolism (2025), he elucidated the role of the NE-FFA-Na⁺/K⁺-ATPase pathway in regulating neuronal hyperexcitability and behavioral arousal. Moreover, his groundbreaking development of a circadian disruption-induced manic mouse model for bipolar disorder research (published in Molecular Psychiatry, 2023) has provided a valuable tool for studying mood disorders and developing new therapeutic approaches.

📚 Academic Publications and Editorial Work

With an impressive academic portfolio, Professor Li has authored and edited three influential books centered on neuroglial science, expanding the literature in this specialized domain. His published works include notable titles with ISBNs: 978-7-117-34321-3, 978-3-030-77375-5, and 978-2-88963-497-2. These contributions serve as essential resources for both emerging and seasoned neuroscientists, offering detailed insights into glial biology, neurochemical interactions, and translational research.

🏅 Accolades and Recognition

Professor Li’s scholarly excellence is widely recognized, as reflected in his H-index of 34 and a total citation count of 3,530 according to Web of Science. His ability to consistently produce high-impact research has made him a respected voice in neuroscience and pharmacology. He has successfully led eight research projects funded by prestigious bodies such as the Natural Science Foundation of China and the Ministry of Education, while also currently heading two additional projects supported by the provincial science foundation.

🤝 Industry and Consultancy Impact

Beyond academic circles, Professor Li has extended his expertise into practical applications through four consultancy projects, bridging the gap between research and real-world forensic or pharmaceutical needs. His ability to translate complex neuropharmacological findings into actionable insights for the industry underscores his role as not only a theorist but also a problem-solver and innovator.

🔬 Legacy and Future Contributions

As a scientist, educator, and leader, Professor Baoman Li continues to shape the future of neuroscience and pharmacological toxicology. His ongoing research and collaborative efforts are expected to yield further breakthroughs in understanding brain-behavior relationships and disease mechanisms. With a legacy already marked by innovation and impact, his future contributions promise to enhance diagnostics, treatments, and preventive strategies for neurological and psychiatric disorders. His commitment to mentoring young scholars and editing academic literature ensures that his influence will resonate across generations of researchers to come.

Publication

  • Title: Cerebrospinal Fluid Enters Peripheral Organs by Spinal Nerves Supporting Brain–Body Volume Transmission
    Authors: Li, Baoman; Xia, Maosheng; Harkany, Tibor; Verkhratsky, Alexei N.
    Year: Not specified (likely 2024 or 2025)

 

  • Title: Anti-seizure effects of norepinephrine-induced free fatty acid release
    Authors: Li, Baoman; Sun, Qian; Ding, Fengfei; Smith, Nathan A.; Nedergaard, Maiken
    Year: 2025
    Journal: Cell Metabolism

 

  • Title: Major depressive disorder: hypothesis, mechanism, prevention and treatment
    Authors: Cui, Lulu; Li, Shu; Wang, Siman; Xia, Maosheng; Li, Baoman
    Year: Not specified (likely 2024 or 2025)
    Type: Review (Open access)

 

  • Title: The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs
    Authors: Li, Xinyu; Wang, Siman; Zhang, Dianjun; Xia, Maosheng; Li, Baoman
    Year: 2024
    Journal: Proceedings of the National Academy of Sciences of the USA (Open access)

 

  • Title: Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice
    Authors: Wang, Shuying; Yu, Xiaojin; Cheng, Lili; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Cell Death and Disease (Open access)

 

  • Title: Ketamine administration causes cognitive impairment by destroying the circulation function of the glymphatic system
    Authors: Wu, Xue; Wen, Gehua; Yan, Lei; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Biomedicine and Pharmacotherapy (Open access)

 

  • Title: Correction to: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology (Erratum, Open access)

 

  • Title: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology

 

  • Title: Trace metals and astrocytes physiology and pathophysiology
    Authors: Li, Baoman; Yu, Weiyang; Verkhratsky, Alexei N.
    Year: 2024
    Journal: Cell Calcium

 

Conclusion:

Dr. Baoman Li is a strong and deserving candidate for the Best Researcher Award. His innovative research, publication in high-impact journals, and interdisciplinary contributions demonstrate excellence and sustained scientific productivity. While he can enhance his visibility and further define his leadership role, his current achievements are more than sufficient to merit this prestigious recognition.

 

Kiran Solingapuram Sai | Neuroimaging | Best Researcher Award

Dr. Kiran Solingapuram Sai | Neuroimaging | Best Researcher Award

Dr. Kiran Solingapuram Sai, Wake Forest School of Medicine, United States.

Dr. Kiran K. Solingapuram Sai, PhD, is an Associate Professor with tenure in the Department of Radiology at Wake Forest School of Medicine. He holds a Ph.D. in Organic Chemistry from Northern Illinois University and has extensive research experience in radiopharmaceutical chemistry. His postdoctoral training at Washington University’s Mallinckrodt Institute of Radiology focused on radiotracer development.

Profile

Orcid

 

✨ Early Academic Pursuits

Dr. Kiran K. Solingapuram Sai embarked on his academic journey with a strong foundation in chemistry, earning a Bachelor of Science degree in Chemistry, Biochemistry, and Microbiology from Osmania University, Hyderabad, India, in 2001. His passion for organic chemistry led him to pursue a Master of Science in the same field at Osmania University, where he honed his expertise in chemical synthesis and molecular interactions. Determined to explore the depths of organic chemistry, he pursued his Ph.D. at Northern Illinois University, DeKalb, IL, under the mentorship of Dr. Douglas A. Klumpp. During this period, his research focused on synthetic methodologies and organic reaction mechanisms, paving the way for his future contributions to medicinal and radiopharmaceutical chemistry.

🌐 Professional Endeavors

Dr. Sai’s professional journey commenced with a prestigious postdoctoral research associate position at the Mallinckrodt Institute of Radiology at Washington University in St. Louis, MO, where he worked under the guidance of Dr. Robert H. Mach. During his tenure from 2010 to 2013, he delved into the complexities of radiochemistry, developing novel radiotracers and exploring their applications in medical imaging. This experience laid the groundwork for his career in radiopharmaceutical sciences. In 2014, he joined Wake Forest School of Medicine as a Research Instructor and Chief Radiochemist, marking the beginning of his significant contributions to translational imaging and radiopharmaceutical production.

⚛️ Contributions and Research Focus

At Wake Forest School of Medicine, Dr. Sai played a pivotal role in the Department of Radiology and the Clinical Translational Science Institute (CTSI). He specialized in managing clinical and research-based radiopharmaceutical production at the Wake Forest PET Research Center. As a cyclotron manager and coordinator, he oversaw the synthesis and quality control of radiotracers essential for PET imaging. His expertise extended to the development and implementation of cGMP-approved protocols for C-11 and F-18 radiopharmaceutical production, ensuring the highest standards of safety and efficacy. His research focuses on advancing PET imaging techniques, exploring new radiotracers for diagnostic and therapeutic applications, and improving imaging biomarker development.

🏆 Accolades and Recognition

Dr. Sai’s dedication to radiochemistry and molecular imaging has earned him recognition in the scientific community. His work has been instrumental in developing radiopharmaceuticals for neurological and oncological imaging, contributing significantly to early disease detection and targeted therapy. His contributions have been acknowledged through numerous research grants, collaborative projects, and publications in high-impact scientific journals. His commitment to excellence and innovation has positioned him as a leading figure in the field of radiopharmaceutical sciences.

🔬 Impact and Influence

Beyond his research and technical expertise, Dr. Sai has mentored budding scientists and researchers in the field of radiochemistry and imaging sciences. His guidance has helped shape the next generation of radiopharmaceutical experts, fostering a culture of innovation and scientific curiosity. His role in translational imaging programs has bridged the gap between basic research and clinical applications, directly impacting patient care by improving diagnostic imaging techniques.

💡 Legacy and Future Contributions

Dr. Sai’s work continues to inspire advancements in molecular imaging and radiopharmaceutical development. As an Associate Professor with tenure at Wake Forest School of Medicine, he remains dedicated to pushing the boundaries of radiochemistry, developing cutting-edge imaging agents, and enhancing the precision of diagnostic medicine. His legacy in the field is defined by his unwavering commitment to scientific discovery, translational research, and the continuous pursuit of excellence in radiopharmaceutical sciences.Dr. Kiran K. Solingapuram Sai’s contributions to the field of radiopharmaceutical chemistry stand as a testament to his dedication, innovation, and impact on medical imaging and healthcare. His journey from a passionate chemistry student to a distinguished professor and researcher highlights the transformative power of science in shaping the future of medicine.

 

Publication

  1. Radiation-induced brain injury in non-human primates: A dual tracer PET study with [11C]MPC-6827 and [11C]PiB

    • Authors: Naresh Damuka, George W. Schaaf, Mack Miller, Caleb Bradley, Bhuvanachandra Bhoopal, Ivan Krizan, Krishna K. Gollapelli, Christopher T. Whitlow, J. Mark Cline, Kiran K. Solingapuram Sai
    • Year: 2025

 

  1. The β-Secretase 1 Enzyme as a Novel Therapeutic Target for Prostate Cancer

    • Authors: Hilal A. Rather, Sameh Almousa, Ashish Kumar, Mitu Sharma, Isabel Pennington, Susy Kim, Yixin Su, Yangen He, Abdollah R. Ghara, Kiran Kumar Solingapuram Sai et al.
    • Year: 2023

 

  1. Development and Optimization of 11C-Labeled Radiotracers: A Review of the Modern Quality Control Design Process

    • Authors: Paul Josef Myburgh, Kiran Kumar Solingapuram Sai
    • Year: 2023

 

  1. Binding Parameters of [11C]MPC-6827, a Microtubule-Imaging PET Radiopharmaceutical in Rodents

    • Authors: Avinash H. Bansode, Bhuvanachandra Bhoopal, Krishna Kumar Gollapelli, Naresh Damuka, Ivan Krizan, Mack Miller, Suzanne Craft, Akiva Mintz, Kiran Kumar Solingapuram Sai
    • Year: 2023

 

  1. PET Imaging of [11C]MPC-6827, a Microtubule-Based Radiotracer in Non-Human Primate Brains

    • Authors: Naresh Damuka, Paul W. Czoty, Ashley T. Davis, Michael Nader, Susan H. Nader, Suzanne Craft, Shannon L. Macauley, Lindsey K. Galbo Thomma, Phillip M. Epperly, Christopher T. Whitlow et al.
    • Year: 2020

 

  1. One-pot synthesis of novel tert-butyl-4-substituted phenyl-1H-1,2,3-triazolo piperazine/piperidine carboxylates, potential GPR119 agonists

    • Authors: Nagaraju Bashetti, J.V. Shanmukha Kumar, Naresh Varma Seelam, B. Prasanna, Akiva Mintz, Naresh Damuka, Sriram Devanathan, Kiran Kumar Solingapuram Sai
    • Year: 2019

 

Conclusion

Dr. Kiran K. Solingapuram Sai has established himself as a leading expert in radiopharmaceutical sciences, contributing significantly to translational imaging research. His work in PET radiopharmaceutical production and quality assurance underscores his role in advancing medical imaging techniques. His academic and research contributions make him a valuable asset in the field of radiology and molecular imaging.