Masoud Kargar | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Masoud Kargar | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Masoud Kargar | Islamic Azad University | Iran

Dr. Masoud Kargar is an Assistant Professor in the Department of Computer Engineering at Islamic Azad University, Tabriz Branch, specializing in artificial intelligence, machine learning, reinforcement learning, and software system engineering. He earned his bachelor’s degree in applied mathematics, master’s degree in software engineering, and Ph.D. in software engineering with a focus on modularization of multi-programming software systems. Dr. Kargar has extensive academic experience, having taught a wide range of undergraduate, master’s, and doctoral courses in advanced programming, algorithms, software engineering, data mining, big data, project management, and natural language processing across multiple universities. He also serves as the Director of Information and Communication Technology and leads the development of various software systems. Dr. Kargar is a member of the editorial board of the Iranian Journal of Computer Science (Springer) and has published 19 documents, which have been cited 89 times, giving him an h-index of 6. His research contributions have significantly advanced the fields of machine learning and software engineering, and his academic leadership continues to inspire both students and colleagues. Dr. Kargar remains committed to fostering innovation and excellence in computer engineering education and research.

Profiles: Scopus | Google Scholar | Orcid | Research Gate

Featured Publications

Karegar, M., Isazadeh, A., Fartash, F., Saderi, T., & Navin, A. H. (2008). Data-mining by probability-based patterns. Proceedings of the 30th International Conference on Information Technology Interfaces, 28.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2019). Multi-programming language software systems modularization. Computers & Electrical Engineering, 80, 106500.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2017). Semantic-based software clustering using hill climbing. 2017 International Symposium on Computer Science and Software Engineering.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2020). Improving the modularization quality of heterogeneous multi-programming software systems by unifying structural and semantic concepts. Journal of Supercomputing, 76(1), 17.

Navin, A. H., Fesharaki, M. N., Mirnia, M., & Kargar, M. (2007). Modeling of random variable with digital probability hyper digraph: Data-oriented approach. Proceedings of World Academy of Science, Engineering and Technology, 25, 25.

Bayani, A., & Kargar, M. (2024). LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network. Physiological Reports, 12(17), e16182.

Karegar, M., Saderi, T., Isazadeh, A., & Fartash, F. (2008). Electronic consulting in marketing. 2008 3rd International Conference on Information and Communication Technology, 5.

Irena Roterman | Computational Neuroscience | Best Researcher Award

Prof. Dr. Irena Roterman | Computational Neuroscience | Best Researcher Award

Prof. Dr. Irena Roterman, Jagiellonian University Medical College, Poland.

Prof. Irena Roterman-Konieczna is a distinguished scientist whose academic roots in theoretical chemistry and biochemistry evolved into groundbreaking contributions in bioinformatics. With a Ph.D. and habilitation in biochemistry, and a postdoctoral fellowship at Cornell University, she developed a unique perspective on protein structure and folding. Her most notable innovation is the Fuzzy Oil Drop (FOD) model, which simulates protein folding by incorporating environmental effects using a 3D Gaussian function to map hydrophobicity distribution. This model has wide applicability—from understanding membrane proteins and amyloids to analyzing domain-swapping and receptor anchoring.

Profile

Scopus

 

🎓 Early Academic Pursuits

Irena Roterman-Konieczna began her academic journey in theoretical chemistry at the prestigious Jagiellonian University, graduating from the Faculty of Chemistry in 1974. Her early interest in molecular structure and the physicochemical underpinnings of biological systems laid a strong foundation for her interdisciplinary career. She deepened her scientific expertise by earning a Ph.D. in biochemistry in 1984 from Nicolaus Copernicus Medical Academy in Krakow, focusing on the structure of the recombinant IgG hinge region. Her postdoctoral studies at Cornell University from 1987 to 1989, under the mentorship of Harold A. Scheraga, further shaped her academic development. There, she explored force fields used in prominent computational programs like AMBER, CHARMM, and ECEPP, bridging theoretical modeling with biomolecular reality.

🧬 Professional Endeavors in Bioinformatics

Throughout her career, Prof. Roterman-Konieczna has been at the forefront of bioinformatics, dedicating herself to unraveling the mysteries of protein structure and amyloid formation. Following her habilitation in biochemistry at the Jagiellonian University Faculty of Biotechnology in 1994 and the conferment of her professorial degree in medical sciences in 2004, she continued to pioneer innovative methods in structural bioinformatics. Her hallmark contribution, the Fuzzy Oil Drop (FOD) model, revolutionized the understanding of protein folding. The model uniquely incorporates environmental influence into folding simulations by using a 3D Gaussian function to describe hydrophobicity distribution—proposing that hydrophobic residues form a central core while hydrophilic residues remain exposed. This paradigm introduced a more realistic, dynamic framework for simulating in silico protein folding.

🧪 Contributions and Research Focus

Prof. Roterman-Konieczna’s research has explored how proteins behave not only in aqueous environments but also within membranes and under the influence of external force fields. By modifying the Gaussian-based FOD model, she extended its applicability to membrane proteins, enabling quantification of their anchoring mechanisms and mobility. Her investigations into chaperonins and domain-swapping phenomena further illustrate the power of her model to decode complex folding and protein-protein interactions. She introduced a dual-variable simulation function—accounting for both internal forces (non-bonded interactions within the protein chain) and external forces (environmental effects)—to guide structural transformation toward energy minima. These ideas are foundational in modern computational biology, where realistic folding predictions are critical for understanding disease mechanisms and therapeutic targeting.

📘 Scholarly Publishing and Intellectual Outreach

A prolific author, Prof. Roterman-Konieczna has made significant contributions to scientific literature. She has authored several influential books, many published in Open Access to promote knowledge sharing. These works include “Protein Folding In Silico” (Elsevier), “Systems Biology – Functional Strategies of Living Organism” (Springer), and “From Globular Proteins to Amyloids” (Elsevier, 2020). Her books elegantly communicate complex bioinformatic strategies, such as ligand binding site identification, protein-protein interactions, and computer-aided diagnostics. Moreover, her editorial leadership from 2005 to 2020 as Chief Editor of the journal Bio-Algorithms and Med-Systems cemented her influence in shaping interdisciplinary dialogues at the intersection of medicine, biology, and computation.

🏆 Accolades and Recognition

Prof. Roterman-Konieczna’s work has earned international acclaim. Notably, she is listed among the Top 2% scientists worldwide by Stanford University and Elsevier—a testament to her influential research and academic reputation. With 149 publications indexed in PubMed, her impact on the bioinformatics community is both broad and profound. Over the course of her career, she has also served as a mentor to 14 doctoral students, many of whom continue to contribute to research and innovation across various fields of biomedicine.

🌐 Impact and Influence

Her research has advanced global understanding of how proteins fold, interact, and misfold—a process central to neurodegenerative diseases such as Alzheimer’s. The FOD model continues to provide a computational lens for studying amyloid formation and supramolecular assemblies. Her model is also pivotal in studying receptor anchoring in membranes and exploring domain-swapping mechanisms critical to protein complex formation. By integrating thermodynamic theory, statistical modeling, and structural biology, her work bridges theoretical research with biomedical applications, pushing the boundaries of in silico experimentation.

🧭 Legacy and Future Contributions

Prof. Irena Roterman-Konieczna’s legacy is rooted in her visionary approach to molecular biology, championing models that blend computational precision with biological realism. Her commitment to open access publishing and academic mentoring reflects a deep dedication to inclusive, sustainable scientific progress. As systems biology and personalized medicine continue to evolve, her models and insights will remain cornerstones for future explorations in disease modeling, drug design, and molecular diagnostics. Her career exemplifies how interdisciplinary thinking and computational ingenuity can transform the life sciences, leaving a legacy that will guide future generations of scientists.

Publication

  • Title: Aquaporins as Membrane Proteins: The Current Status
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), G. Szoniec (Grzegorz), L. Konieczny (Leszek)
    Year: 2025

 

  • Title: DisorderUnetLM: Validating ProteinUnet for efficient protein intrinsic disorder prediction
    Authors: K. Kotowski (Krzysztof), I.K. Roterman (Irena K.), K. Stapor (Katarzyna)
    Year: 2025

 

  • Title: Protein folding: Funnel model revised
    Authors: I.K. Roterman (Irena K.), M. Slupina (Mateusz), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Domain swapping: a mathematical model for quantitative assessment of structural effects
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Chameleon Sequences─Structural Effects in Proteins Characterized by Hydrophobicity Disorder
    Authors: I.K. Roterman (Irena K.), M. Slupina (Mateusz), K. Stapor (Katarzyna), K. Gądek (Krzysztof), P. Nowakowski (Piotr)
    Year: 2024

 

  • Title: Transmembrane proteins—Different anchoring systems
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: External Force Field for Protein Folding in Chaperonins─Potential Application in In Silico Protein Folding
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Structural features of Prussian Blue-related iron complex FeT of activity to peroxidate unsaturated fatty acids
    Authors: M. Lasota (Małgorzata), G. Zemanek (Grzegorz), O. Barczyk-Woźnicka (Olga), L. Konieczny (Leszek), I.K. Roterman (Irena K.)
    Year: 2024

 

  • Title: Editorial: Structure and function of trans-membrane proteins
    Authors: I.K. Roterman (Irena K.), M.M. Brylinski (Michal Michal), F. Polticelli (Fabio), A.G. de Brevern (Alexandre G.)
    Year: 2024

 

  • Title: Model of the external force field for the protein folding process—the role of prefoldin
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), L. Konieczny (Leszek)
    Year: 2024

 

🧠 Conclusion

Prof. Roterman-Konieczna’s career stands as a testament to how deep scientific insight and computational innovation can revolutionize biological understanding. Her FOD model not only enriches the study of protein dynamics but also provides a versatile framework for medical and pharmaceutical applications. With a legacy built on rigorous research, educational outreach, and academic leadership, her influence will continue to guide future advances in molecular biology, bioinformatics, and biomedical science.

 

Francisco Mena | Computational Neuroscience | Best Researcher Award

Mr. Francisco Mena | Computational Neuroscience | Best Researcher Award

Mr. Francisco Mena, University of Kaiserslautern-Landau, Germany.

Francisco Mena is a dynamic researcher in the field of machine learning, currently pursuing a PhD at the University of Kaiserslautern-Landau (RPTU), Germany. His academic roots trace back to Federico Santa María Technical University (UTFSM) in Chile, where he developed a strong foundation in computer engineering and data science. With a specialization in unsupervised learning, deep learning, and multi-view data fusion, his work focuses on building robust and scalable models that minimize human intervention and adapt to incomplete or noisy datasets—particularly in the context of Earth observation and crowdsourced data. He has worked across international research institutes like DFKI in Germany and Inria in France, contributing to global advancements in AI and data science. His teaching and mentoring roles, combined with his innovative research, mark him as a rising contributor to the future of intelligent systems.

Profile

Google Scholar
Scopus
Orcid

 

🎓 Early Academic Pursuits

Francisco Mena’s academic journey began with a strong foundation in computer engineering at Federico Santa María Technical University (UTFSM) in Chile. Demonstrating exceptional academic performance, he ranked in the top 10% of his class, securing the 4th position among 66 students. He pursued an integrated path that led him to obtain a Bachelor of Science, a Licenciado, and later the Ingeniería Civil en Informática degree. Driven by curiosity and a passion for machine learning, he transitioned seamlessly into postgraduate studies, earning a Magíster en Ciencias de la Ingeniería Informática at UTFSM. His master’s thesis, focused on mixture models in crowdsourcing scenarios, set the stage for his growing interest in unsupervised learning and probabilistic models.

💼 Professional Endeavors

Alongside his studies, Francisco actively engaged in diverse professional roles that enriched his technical and academic expertise. He served as a research assistant at the Chilean Virtual Observatory (CHIVO), contributing to astroinformatics projects by processing and organizing astronomical datasets from ALMA and ESO observatories. His early professional stint as a front-end and back-end developer provided him with hands-on industry experience. In academia, he held several teaching roles, progressing from laboratory assistant to lecturer in key courses such as computational statistics, artificial neural networks, and machine learning. Currently, as a Student Research Assistant at the German Research Centre for Artificial Intelligence (DFKI), he contributes to Earth observation projects, enhancing models for crop yield prediction using multi-view data.

🔬 Contributions and Research Focus

Francisco’s research is anchored in machine learning with a special emphasis on unsupervised learning, deep neural architectures, multi-view learning, and data fusion. His doctoral work at University of Kaiserslautern-Landau (RPTU) focuses on handling missing views in Earth observation data, an increasingly important issue in remote sensing. He explores innovative methods that challenge traditional domain-specific models by advocating for approaches that minimize human intervention and labeling. His core research areas include autoencoders, deep clustering, dimensionality reduction, and latent variable modeling, with applications extending to vegetation monitoring, neural information retrieval, and crowdsourcing.

🌍 Global Collaborations

Francisco’s commitment to impactful research is evident in his international collaborations. In addition to his work in Germany, he undertook a research visit to Inria in Montpellier, France, where he explored cutting-edge topics such as multi-modal co-learning, multi-task learning, and mutual distillation. These collaborations allow him to expand the practical relevance of his research across geographical and disciplinary boundaries, contributing to global discussions in artificial intelligence and data science.

🧠 Impact and Influence

Through his extensive academic involvement, Francisco has shaped the understanding of machine learning models that are both scalable and adaptable to real-world challenges. His contributions in crowdsourcing, particularly the use of latent group variable models for large-scale annotations, reflect his commitment to developing resource-efficient models. His influence extends into education, where he has mentored students and shaped curriculum delivery in machine learning-related subjects. By leveraging tools like PyTorch, QGIS, and Slurm, he ensures his work remains at the cutting edge of technological advancement.

🏆 Recognition and Growth

Francisco’s academic excellence is evident from his consistent achievements and recognition. His GPA of 94% during his master’s program stands as a testament to his dedication and intellect. Being ranked #4 in his undergraduate program highlights his sustained academic brilliance. His teaching roles at UTFSM and lecturing at RPTU further underscore the trust institutions place in his knowledge and teaching abilities.

🚀 Legacy and Future Contributions

With a clear research vision and a strong international presence, Francisco Mena is poised to leave a lasting impact in the field of artificial intelligence, particularly in unsupervised learning and Earth observation. His focus on reducing dependency on human intervention, increasing model generalizability, and handling incomplete or noisy data reflects a future-forward approach. As his doctoral journey progresses, he is expected to continue influencing how machine learning models are conceptualized, designed, and deployed in real-world applications—especially those that require scalable, domain-agnostic solutions.

Publication

 

  • Harnessing the power of CNNs for unevenly-sampled light-curves using Markov Transition Field – M Bugueño, G Molina, F Mena, P Olivares, M Araya – 2021

 

  • Common practices and taxonomy in deep multiview fusion for remote sensing applications – F Mena, D Arenas, M Nuske, A Dengel – 2024

 

  • A binary variational autoencoder for hashing – F Mena, R Ñanculef – 2019

 

  • Refining exoplanet detection using supervised learning and feature engineering – M Bugueño, F Mena, M Araya – 2018

 

  • Predicting crop yield with machine learning: An extensive analysis of input modalities and models on a field and sub-field level – D Pathak, M Miranda, F Mena, C Sanchez, P Helber, B Bischke, … – 2023

 

  • Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction – F Mena, D Pathak, H Najjar, C Sanchez, P Helber, B Bischke, P Habelitz, … – 2025

 

  • A comparative assessment of multi-view fusion learning for crop classification – F Mena, D Arenas, M Nuske, A Dengel – 2023

 

  • Self-supervised Bernoulli autoencoders for semi-supervised hashing – R Ñanculef, F Mena, A Macaluso, S Lodi, C Sartori – 2021

 

  • Impact assessment of missing data in model predictions for Earth observation applications – F Mena, D Arenas, M Charfuelan, M Nuske, A Dengel – 2024

 

  • Increasing the robustness of model predictions to missing sensors in Earth observation – F Mena, D Arenas, A Dengel – 2024

 

🧩 Conclusion

Driven by curiosity and innovation, Francisco Mena is reshaping the landscape of machine learning through his pursuit of generalizable, efficient, and human-independent models. His research not only addresses technical limitations but also responds to the growing need for AI systems that are adaptable across domains and disciplines. With a solid academic background, global collaborations, and a clear research vision, he is set to make lasting contributions to unsupervised learning and its applications in critical areas like Earth observation and neural information retrieval. As he continues to build on his expertise, his work promises to influence both the academic world and the practical deployment of intelligent systems in complex, real-world scenarios.

Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr. Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr.  Koagne Longpa Tamo Silas, University of Dschang, Cameroon.

Koagne Longpa Tamo Silas is a dedicated researcher in the field of medical physics, specializing in automation, artificial intelligence, and electronic system design. His academic journey from Bamenda State University to Dschang State University reflects his continuous pursuit of knowledge and innovation. His contributions to circuit simulation, embedded systems, and artificial neural networks have established him as a promising figure in medical physics.

Profile

Google Scholar

🎓 Early Academic Pursuits

Born on July 12, 1998, in Mbouda, Cameroon, Koagne Longpa Tamo Silas displayed a keen interest in science and technology from a young age. His passion for physics and engineering led him to pursue higher education at Bamenda State University, where he embarked on an academic journey in Electrical and Power Engineering. His undergraduate studies, from November 2015 to August 2018, laid the foundation for his expertise in electrical systems, automation, and circuit design. Eager to expand his knowledge, he continued his postgraduate studies in the same field at Bamenda State University from September 2018 to July 2020, honing his skills in power engineering and applied electronics.

🚀 Professional Endeavors

Determined to deepen his expertise, Koagne Longpa Tamo Silas transitioned into the field of physics, enrolling as a Ph.D. student at Dschang State University in December 2022. His academic pursuits in the Department of Physics align with his interests in medical physics, where he integrates automation, applied computer science, and electronics to innovate in the field. As a dedicated researcher, he continues to engage with the Faculty of Science at Dschang State University, contributing to the academic and scientific community with his research in medical physics and embedded systems.

🤖 Contributions and Research Focus

Koagne Longpa Tamo Silas has dedicated his research efforts to the intersection of medical physics, automation, and artificial intelligence. His work encompasses Analog Artificial Neural Networks, Embedded Systems, Circuit Simulation, Digital and Analog Electronics, and Microcontroller Programming. His proficiency in tools like Spice Simulation, Cadence Virtuoso, and Electronic Design Automation allows him to design and optimize medical devices and automated systems. His research aims to enhance diagnostic and therapeutic tools in medical physics by leveraging artificial intelligence and embedded systems.

🏆 Accolades and Recognition

Throughout his academic and research career, Koagne Longpa Tamo Silas has garnered recognition for his contributions to medical physics and electronics. His innovative approach to circuit simulation and signal processing has positioned him as a promising researcher in his field. His dedication to advancing medical technologies has earned him the respect of his peers and mentors, as he continues to contribute valuable insights to the scientific community.

🌐 Impact and Influence

Through his academic journey and research, Koagne Longpa Tamo Silas has influenced the way automation and artificial intelligence are integrated into medical physics. His work in digital electronics and microcontroller programming is paving the way for innovative solutions in the medical field. His contributions extend beyond research, as he actively engages with students and researchers, fostering a culture of knowledge-sharing and scientific exploration.

 

Publication

  • A High-Resolution Non-Volatile Floating Gate Transistor Memory Cell for On-Chip Learning in Analog Artificial Neural Networks
    Authors: KLT Silas, DTA Bernard, FT Bernard, L Jean-Pierre, GW Ejuh
    Year: 2025

 

  • Breast Cancer Diagnosis with Machine Learning Using Feed-Forward Multilayer Perceptron Analog Artificial Neural Network
    Authors: B Djimeli-Tsajio Alain, KLT Silas, LT Jean-Pierre, N Thierry, GW Ejuh
    Year: 2024

 

  • Design and Implementation of a Digital Breath Alcohol Detection System with SMS Alert and Vehicle Tracking on Google Map
    Author: KLT Silas
    Year: 2020

 

  • Design and Realization of an Electronic Attendance System Based on RFID with an Automatic Door Unit
    Author: MK Jules
    Year: 2018

 

🎯 Conclusion

With a vision to transform medical physics through automation and AI-driven technologies, Koagne Longpa Tamo Silas is on a path to making significant contributions to healthcare innovation. His passion, dedication, and expertise ensure that his research will continue to shape the future of medical technology, leaving a lasting impact on both academia and practical applications in the field.