Ricardo Osorio | Clinical Neuroscience | Best Researcher Award

Dr. Ricardo Osorio | Clinical Neuroscience | Best Researcher Award

Dr. Ricardo S. Osorio is a tenured Associate Professor of Psychiatry and Radiology at NYU Grossman School of Medicine, where he directs the Healthy Brain Aging and Sleep Center and serves as Director of the Biomarker Core within the NYU Alzheimer’s Disease Research Center. A physician-scientist, Dr. Osorio investigates the interplay of sleep, vascular, and inflammatory mechanisms in Alzheimer’s disease, integrating multimodal biomarkers, neuroimaging, and detailed clinical phenotyping. He has led several landmark studies, including trials on sleep apnea, amyloid and tau accumulation, brain energetics, and locus coeruleus dysfunction, exploring how sleep and metabolic factors influence cognitive decline and neurodegeneration. His work has significantly advanced translational biomarker development, assay harmonization, and inclusive recruitment in aging research. Dr. Osorio has published over 130 peer-reviewed articles in top journals such as JAMA Neurology, Annals of Neurology, Sleep, Alzheimer’s & Dementia, Lancet, and Brain, contributing to more than 8,369 citing documents, with a total citation count of 9,893 and an h-index of 44. He serves on multiple editorial boards, including Sleep Medicine Reports, and has provided expert peer review for leading journals worldwide. His collaborative network spans the NYU Alzheimer’s Disease Research Center, Mount Sinai, the ENIGMA-Sleep Consortium, and numerous national and international aging and sleep research initiatives, mentoring the next generation of clinician-scientists while shaping the field of sleep and neurodegeneration.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

  1. Author(s). (Year). Disordered sleep and painful diabetic neuropathy (PDN): A review of the literature on pathophysiology, pharmacologic and nonpharmacologic treatment options, and future directions. Journal Name, Volume(Issue), pages.

  2. Author(s). (2025). EEG slow oscillations and overnight spatial navigational memory performance in CPAP-treated obstructive sleep apnea. Sleep, Volume(Issue), pages.

  3. Author(s). (2025). High-frequency oscillations >250 Hz in people with Down syndrome and associated Alzheimer’s disease dementia. Alzheimer’s & Dementia, Volume(Issue), pages.

  4. Author(s). (2025). Impact of Alzheimer’s disease on sleep in adults with Down syndrome. Alzheimer’s & Dementia, Volume(Issue), pages.

  5. Author(s). (2025). Sleep-wake variation in body temperature regulates tau secretion and correlates with CSF and plasma tau. Journal of Clinical Investigation, Volume(Issue), pages.

  6. Author(s). (2025). The stability of slow-wave sleep and EEG oscillations across two consecutive nights of laboratory polysomnography in cognitively normal older adults. Journal of Sleep Research, Volume(Issue), pages.

  7. Author(s). (2025). Two-year longitudinal outcomes of subjective cognitive decline in Hispanics compared to non-Hispanic Whites. Journal of Geriatric Psychiatry and Neurology, Volume(Issue), pages.

  8. Author(s). (Year). Enhancing sleep, wakefulness, and cognition with transcranial photobiomodulation: A systematic review. Journal Name, Volume(Issue), pages.

  9. Author(s). (2024). The relationship between anxiety and levels of Alzheimer’s disease plasma biomarkers. Journal of Alzheimer’s Disease, Volume(Issue), pages.

  10. Author(s). (2024). The neutrophil to lymphocyte ratio associates with markers of Alzheimer’s disease pathology in cognitively unimpaired elderly people. Immunity and Ageing, Volume(Issue), pages.

Zhou Yu | Behavioral Neuroscience | Best Researcher Award

Dr. Zhou Yu | Behavioral Neuroscience | Best Researcher Award

Dr. Yu Zhou is a postdoctoral researcher at Army Engineering University, specializing in the intersection of neuroscience, computer vision, and target detection. His research primarily focuses on deceptive visual design for both human and machine perception, exploring how visual stimuli can influence detection, recognition, and cognitive processing. Zhou has conducted pioneering studies on camouflage and optical deception, utilizing EEG-based brain functional network analysis to evaluate target visibility and cognitive responses. His work integrates principles from weapon science, biomedical engineering, and computer science to develop comprehensive models of visual perception and deception. Representative publications include investigations into neural responses to camouflage targets with varying exposure signs, the impact of color differences on brain activation patterns, and feasibility assessments of optical camouflage effects. Through these studies, he contributes to a deeper understanding of how visual designs can manipulate human attention and computer vision systems, providing actionable insights for defense technology applications. Zhou’s research emphasizes rigorous quantitative evaluation methods, leveraging neurophysiological data to inform the design of effective deceptive visual patterns. With an h-index of 2 and multiple citations, his work demonstrates a growing influence in fields spanning neuroscience-informed computer vision, perceptual deception, and applied optical camouflage.

Profiles: Scopus | Reasearch Gate

Featured publication

Author(s). (2024). Neural responses to camouflage targets with different exposure signs based on EEG. Neuropsychologia.

Dipesh | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Dipesh | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Dipesh | SR University | India

Dr. Dipesh is a dedicated mathematician specializing in mathematical modeling, with extensive experience in both academic and research domains. He has made significant contributions to applied mathematics, particularly in areas intersecting numerical methods, AI/ML, and fluid dynamics. Dr. Dipesh has actively organized and coordinated multiple academic programs, including national workshops, faculty development programs, and departmental initiatives, demonstrating strong leadership in fostering educational and research excellence. His efforts in coordinating the Department of Intellectual Property Rights and successfully conducting events such as RAFAS highlight his commitment to academic growth and institutional development. Academically, he has pursued rigorous training from undergraduate to postdoctoral levels, culminating in advanced research at Harran University, Turkey. Dr. Dipesh’s scholarly output includes 30 documents that have been cited 103 times, reflecting an h-index of 7, underscoring the impact and relevance of his research contributions in applied mathematics and related interdisciplinary fields. His approach emphasizes quality teaching, student placement, institutional ranking, and enhancing the overall goodwill of the organizations he serves. Driven by a passion for tackling challenges and improving systems with limited resources, Dr. Dipesh continually seeks to connect with external environments, promote collaborative work, and advance the reach and recognition of academic institutions.

Profiles: Scopus | Orcid | Google Scholar | Research Gate | Linked In

Featured Publications

  1. Mathematical model of Cynodon Dactylon’s allelopathic effect on perennial ryegrass for exploring plant-plant interactions based upon ordinary differential equations. (2025). Partial Differential Equations in Applied Mathematics.

  2. Modelling the role of delay in blood flow dynamics in human body using delay differential equations. (2025). Physica A: Statistical Mechanics and Its Applications.

  3. On the modeling the impact of delay on stock pricing fluctuations using delay differential equations. (2025). Physica A: Statistical Mechanics and Its Applications.

Noreen Kamal | Translational Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Noreen Kamal | Translational Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Noreen Kamal | Dalhousie University | Canada

Dr. Noreen Kamal, Ph.D., P.Eng., is an Associate Professor of Industrial Engineering at Dalhousie University, Canada, with cross-appointments in the Departments of Community Health and Epidemiology and Medicine (Neurology). Her research lies at the intersection of health systems engineering and clinical neuroscience, focusing on the optimization of stroke care systems, development of data-driven quality improvement frameworks, and evaluation of biomedical devices for stroke rehabilitation. Dr. Kamal has played a pivotal role in advancing integrated approaches to enhance the efficiency, safety, and accessibility of acute stroke services across Canada. Prior to joining Dalhousie University, she held academic and leadership positions at the University of Calgary and the University of British Columbia, contributing extensively to clinical research and health technology innovation. Her work bridges engineering, medicine, and health policy, emphasizing interdisciplinary collaboration and patient-centered outcomes. With 107 scientific publications, 8,033 citations, and an h-index of 22, Dr. Kamal has established herself as a recognized scholar in healthcare systems improvement and translational neuroscience. Her scholarly and professional contributions continue to drive evidence-based innovation in stroke systems of care, supporting better clinical outcomes and sustainable health service delivery.

Profiles: Scopus | Google Scholar | Research Gate | Linked In

Featured Publications

Author(s). (2025). Exploring differences in stroke treatment between urban and rural hospitals: A thematic analysis of practices in Canada. Canadian Journal of Neurological Sciences.

Author(s). (2025). Designing a patient outcome clinical assessment tool for modified Rankin Scale: “You feel the same way too”. Informatics.

Author(s). (2025). Predicting ischemic stroke patients to transfer for endovascular thrombectomy using machine learning: A case study. Healthcare (Switzerland).

Author(s). (2025). Incident prescriptions for common cardiovascular medications: Comparison of recent versus pre-2020 medication adherence and discontinuation in three universal health care systems. BMC Cardiovascular Disorders.

Author(s). (2025). Rising out-of-hospital mortality in Canada during 2020–2022: A striking impact observed among young adults. Canadian Journal of Public Health.

Author(s). (2025). Discrete event simulation model of an acute stroke treatment process at a comprehensive stroke center: Determining the ideal improvement strategies for reducing treatment times. Journal of the Neurological Sciences.

Author(s). (2025). Validation of the Passive Surveillance Stroke Severity Score in three Canadian provinces. Canadian Journal of Neurological Sciences.

Author(s). (2025). A stochastic optimization model for designing disaster relief networks with congestion, disruption and distributional ambiguity. Infor.

Author(s). (2025). Improving access and efficiency of acute ischemic stroke treatment across four Canadian provinces: A stepped-wedge trial. Frontiers in Neurology.

Author(s). (2025). The acute stroke system of treatment across Canada: Findings from a national stroke centre survey. Canadian Journal of Neurological Sciences.

Nasar Ata | Neurology | Best Researcher Award

Mr. Nasar Ata | Neurology | Best Researcher Award

Dr. S. M. Nasar Ata is a researcher in the Department of Neurology at Henry Ford Hospital, Detroit, USA, specializing in artificial intelligence applications in neuroscience. His work focuses on developing machine learning and soft computing–based algorithms such as CNN, ANN, SVM, and MLR for detecting and predicting brain-based disorders, including Multiple Sclerosis. He integrates metabolomics and imaging clinical data to identify biomarkers and construct predictive models for neurological and metabolic diseases. Dr. Ata collaborates with research centers such as JNMC and IBRC AMU on brain tumor prediction from MRI data and with RCDR AMU on diabetes-related model development. His research contributions include several submitted papers on metabolite prediction, deep learning in brain tumor detection, and molecular mechanisms underlying neurodegeneration and cancer. He has also authored the textbook Basics of Bio-Sciences and actively participates in scientific discussions and editorial work. With 3 published documents, 7 citations, and an h-index of 2, Dr. Ata’s growing research profile reflects his commitment to advancing data-driven neurological diagnostics through AI and biostatistical innovation.

Profiles: Scopus | Research Gate

Featured Publication

Corrigendum to “Artificial neural network-based prediction of multiple sclerosis using blood-based metabolomics data” [Multiple Sclerosis and Related Disorders, 92, 105942 (2024)]. (2024). Multiple Sclerosis and Related Disorders, 95, 106321.

Chahra Chbili | Clinical Neuroscience | Best Researcher Award

Assist. Prof. Dr. Chahra Chbili | Clinical Neuroscience | Best Researcher Award

Assist. Prof. Dr. Chahra Chbili | University of Sousse | Tunisia

Dr. Chahra Chbili is an Assistant Professor of Pharmacology at the Higher School of Health Sciences and Techniques of Sousse (ESSTSS) and a member of the Research Laboratory of Metabolic Biophysics and Applied Pharmacology (LR/12ES02) at the Faculty of Medicine Ibn El Jazzar of Sousse, Tunisia. Her academic journey spans extensive training in biological sciences, genetics, and medical biotechnology, with a Ph.D. earned with highest honors for her work on the pharmacokinetic and pharmacogenetic study of carbamazepine therapy in epileptic and bipolar patients. Dr. Chbili’s research focuses on pharmacogenetics, pharmacokinetics, and the molecular mechanisms underlying drug efficacy and toxicity. She has contributed significantly to studies exploring the genetic determinants of drug metabolism, including investigations into glutathione-S-transferases in tuberculosis patients with drug-induced hepatotoxicity. Skilled in advanced laboratory techniques such as PCR, FISH, ELISA, and HPLC-MS, she has developed expertise in integrating molecular biology with clinical pharmacology. Dr. Chbili has authored 17 scientific documents, accumulated 138 citations across 123 indexed works, and maintains an h-index of 7, reflecting her impactful contributions to pharmacological and biomedical research in Tunisia and beyond.

Profiles: Scopus | Orcid | Research Gate

Featured Publications

Chbili, C., Mrad, S., Graiet, H., Selmi, M., Maatoug, J., Maoua, M., Abdellaoui, L., Mrizek, N., Nouira, M., Ben Fredj, M., et al. (2024). Randomized, placebo-controlled pilot study investigating the effects of Laurus nobilis tea on lipid profiles and oxidative stress biomarkers in healthy North African volunteers. The North African Journal of Food and Nutrition Research, 8(17), 86–98.

Chbili, C., Fathallah, N., Laadhari, C., Ouni, B., Saguem, S., Ben Fredj, M., Abdelghani, A., Ben Saad, H., & Ben Salem, C. (2022). Glutathione-S-transferase genetic polymorphism and risk of hepatotoxicity to antitubercular drugs in a North-African population: A case-control study. Gene, 808, 146019.

Rebai, A., Chbili, C., Ben Amor, S., Hassine, A., Ben Ammou, S., & Saguem, S. (2021). Effects of glutathione S-transferase M1 and T1 deletions on Parkinson’s disease risk among a North African population. Revue Neurologique, 177(1–2), 93–99.

Chbili, C. (2021, August 22). The effect of Origanum majorana tea on motor and non-motor symptoms in patients with idiopathic Parkinson’s disease: A randomized controlled pilot study. Journal article.

Chbili, C., Maoua, M., Selmi, M., Mrad, S., Khairi, H., Limem, K., Mrizek, N., Saguem, S., & Ben Fredj, M. (2020). Evaluation of daily Laurus nobilis tea consumption on lipid profile biomarkers in healthy volunteers. Journal of the American College of Nutrition, 39(6), 518–526.

Rebai, A., Reçber, T., Nemutlu, E., Chbili, C., Kurbanoglu, S., Kir, S., Ben Amor, S., Özkan, S. A., & Saguem, S. (2020). GC-MS based metabolic profiling of Parkinson’s disease with glutathione S-transferase M1 and T1 polymorphism in Tunisian patients. Combinatorial Chemistry and High Throughput Screening, 23(8), 785–794.

Mansoor Showkat | Computational Neuroscience | Best Researcher Award

Mr. Mansoor Showkat | Computational Neuroscience | Best Researcher Award

Mr. Mansoor Showkat | SKUAT-Kashmir | India

Mansoor Showkat is a researcher in Plant Biotechnology with an M.Sc. from the University of Agricultural Sciences, Bangalore, and a B.Sc. (Hons.) in Horticulture from Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir. His research expertise spans molecular biology, computational biology, bioinformatics, and tissue culture, with particular emphasis on antifungal compound analysis, gene transformation, and plant-pathogen interactions. Mansoor has contributed to several peer-reviewed publications and book chapters, focusing on the in-silico and in-vitro evaluation of bioactive compounds such as cordycepin, molecular mechanisms of stress responses, and secondary metabolite profiling in plants. His research projects include genetic transformation studies, metabolomics-based investigations, and the use of omics tools for crop improvement. He has actively participated in numerous international workshops, conferences, and webinars related to biotechnology, bioinformatics, and genomics. Mansoor has achieved significant academic recognition, including national rankings in competitive examinations by the Indian Council of Agricultural Research. His scientific impact is reflected by a citation count of 15, an h-index of 2, and an i10-index of 0, highlighting his growing contribution to molecular and agricultural biotechnology research.

Featured Publications

  1. Showkat, M., Narayanappa, N., Umashankar, N., & Saraswathy, B. P., et al. (2024). Optimization of fermentation conditions of Cordyceps militaris and in silico analysis of antifungal property of cordycepin against plant pathogens. Journal of Basic Microbiology, 64(10), e2400409.

  2. Fatimah, N., Ashraf, S., R. U., K. N., Anju, P. B., Showkat, M., Perveen, K., Bukhari, N. A., et al. (2024). Evaluation of suitability and biodegradability of the organophosphate insecticides to mitigate insecticide pollution in onion farming. Heliyon, 10(12).

  3. Margay, K. A. A. A. R., Ashraf, S., Fatimah, N., Jabeen, S. G., & Showkat, M., et al. (2024). Plant circadian clocks: Unravelling the molecular rhythms of nature. International Journal of Plant and Soil Science, 36(8), 596–617.

  4. Margay, A. R., Ashraf, S., Fatimah, N., Jabeen, S. G., Showkat, M., R. U., K. N., Gani, A., et al. (2024). Harnessing brassinosteroids for heat resilience in wheat: A comprehensive study.

  5. Showkat, M., Nagesha, N., Ashraf, S., Nayana, K., Bashir, S., Nair, A. S., et al. (2024). Cordycepin: A molecular Trojan horse against Fusarium oxysporum f. sp. cubense—A computational perspective.

Alireza Kamali-Asl | Neuroimaging | Best Researcher Award

Prof. Dr. Alireza Kamali-Asl | Neuroimaging | Best Researcher Award

Prof. Dr. Alireza Kamali-Asl | Freelance organization | United Kingdom

Professor Alireza Kamaliasl is a distinguished expert in medical radiation engineering and serves as the Director of the Medical Imaging Instruments Laboratory and Head of Molecular Imaging Modality. With over two decades of experience in healthcare technology and molecular imaging, he has made pioneering contributions to the design, simulation, and manufacture of advanced medical imaging instruments across modalities such as SPECT, PET, CT, and radiography. His interdisciplinary research integrates mathematical modeling, computational analysis, and clinical collaboration to enhance diagnostic and theranostic imaging systems. Professor Kamaliasl has authored more than 150 publications in top-tier international journals and conferences, achieving an h-index of 28, with over 3,800 citations and 160 research documents indexed in global databases. He has successfully supervised more than 45 postgraduate research projects, fostering innovation and leadership in radiological sciences. His expertise spans radio-isotopic imaging, system performance optimization, radiation shielding, device calibration, and preventive maintenance management. Recognized for his role as a visionary mentor and strategic planner, Professor Kamaliasl continues to advance multimodality molecular imaging and medical instrumentation, bridging the gap between engineering innovation and clinical application to improve diagnostic precision and therapeutic outcomes.

Profiles: Scopus | Orcid | Google Scholar | Research Gate | Linked In

Featured Publications

  1. Habibzadeh, M. A., Ay, M. R., Kamali-Asl, A. R., Ghadiri, H., & Zaidi, H. (2012). Impact of miscentering on patient dose and image noise in X-ray CT imaging: Phantom and clinical studies. Physica Medica, 28(3), 191–199.

  2. Aghakhan Olia, N., Kamali-Asl, A., Hariri Tabrizi, S., Geramifar, P., et al. (2022). Deep learning–based denoising of low-dose SPECT myocardial perfusion images: Quantitative assessment and clinical performance. European Journal of Nuclear Medicine and Molecular Imaging, 49(5), 1508–1522.

  3. Arefan, D., Talebpour, A., Ahmadinejhad, N., & Kamali-Asl, A. (2015). Automatic breast density classification using neural network. Journal of Instrumentation, 10(12), T12002.

  4. Poorbaygi, H., Aghamiri, S. M. R., Sheibani, S., Kamali-Asl, A., et al. (2011). Production of glass microspheres comprising 90Y and 177Lu for treating hepatic tumors with SPECT imaging capabilities. Applied Radiation and Isotopes, 69(10), 1407–1414.

  5. Khazaee Moghadam, M., Kamali-Asl, A., Geramifar, P., & Zaidi, H. (2016). Evaluating the application of tissue-specific dose kernels instead of water dose kernels in internal dosimetry: A Monte Carlo study. Cancer Biotherapy and Radiopharmaceuticals, 31(10), 367–379.*

Elzbieta Paszynska | Clinical Neuroscience | Best Research Article Award

Prof. Dr. Elzbieta Paszynska | Clinical Neuroscience | Best Research Article Award

Prof. Dr. Elzbieta Paszynska | Poznan University of Medical Sciences | Poland

Professor Elzbieta Paszynska is a distinguished expert in dentistry, serving as Chair of the Department of Integrated Dentistry and Chair of Community Dentistry at Poznan University of Medical Sciences. Her academic focus includes community dentistry, adult comprehensive dental treatment, dental materials, and clinical research in oral health, particularly in patients with eating disorders. She has led numerous significant research projects, including studies on salivary biomarkers, oral health status in eating disorders, and the caries-preventive effects of hydroxyapatite toothpaste in children and adults, collaborating with multiple international institutions. Her research has contributed to over 70 scientific documents with more than 598 citations and an h-index of 13. She has published high-impact works in journals such as Scientific Reports, Frontiers in Public Health, Frontiers in Psychiatry, Nutrients, and the Journal of Dentistry. Her contributions include interdisciplinary projects integrating dentistry, ethics, and public health, and she has coordinated large-scale EU-funded projects and international collaborations. Her work has been recognized with multiple institutional and national awards for scientific excellence, teaching, and professional contributions to dentistry, as well as honors from professional dental associations. She is an active member of national boards and promotes innovation in dental education and research.

Profiles: Scopus | Orcid | Research Gate

Featured Publications

  • Obesity and central accumulation of fat in school-age children with attention-deficit/hyperactivity disorder. (2025). Scientific Reports.

  • Miescher’s Cheilitis as a Diagnostic and Therapeutic Challenge—A Case Report. (2025). Medicina, Kaunas, Lithuania.

  • Prevalence of Toothache in Adults: A Meta-Analysis of Worldwide Studies. (2025).

  • Pain experience and behavior management: efficacy of photobiomodulation as an adjunct to local anesthesia in MIH patients—a randomized split-mouth clinical study. (2025). Frontiers in Neurology.

  • Clinical evidence of caries prevention by hydroxyapatite: An updated systematic review and meta-analysis. (2025).

Musawer Hakimi | Systems Neuroscience | Best Researcher Award

Mr. Musawer Hakimi | Systems Neuroscience | Best Researcher Award

Mr. Musawer Hakimi | Samangan University | Afghanistan

Mr. Musawer Hakimi is an accomplished Assistant Professor at Samangan University, specializing in Computer Science. He holds a Bachelor’s degree in Computer Science from India and a Master’s degree in Information Technology from Kabul University. Demonstrating a strong commitment to lifelong learning, he has earned 25 professional certificates in Computer Science from India, along with two specialized certifications in Ethical Hacking and Oracle Database from the United States. His academic excellence and research contributions have positioned him as a respected scholar with 3 published documents, 13 citations, and an h-index of 1. Mr. Hakimi’s scholarly work has been featured in reputable international journals across the United Kingdom, the United States, Turkey, Sweden, and Indonesia, reflecting his active engagement in global research networks. Beyond his research achievements, he is dedicated to nurturing future computer scientists through his teaching and mentorship at the Public University of Afghanistan, where he plays an instrumental role in advancing computer science education. His interdisciplinary expertise, international collaborations, and consistent scholarly output underscore his impact as an educator, researcher, and thought leader in the evolving field of computer science, contributing to the growth of academic excellence and innovation within Afghanistan and the broader global academic community.

Profiles: Scopus | Orcid | Google Scholar | Research Gate

Featured Publications

Quraishi, T., Ulusi, H., Muhid, A., Hakimi, M., & Olusi, M. R. (2024). Empowering students through digital literacy: A case study of successful integration in a higher education curriculum. Journal of Digital Learning and Distance Education, 2(9), 667–681.

Fazil, A. W., Hakimi, M., Shahidzay, A. K., & Hasas, A. (2024). Exploring the broad impact of AI technologies on student engagement and academic performance in university settings in Afghanistan. RIGGS: Journal of Artificial Intelligence and Digital Business, 2(2), 56–63.

Hakimi, M., Katebzadah, S., & Fazil, A. W. (2024). Comprehensive insights into e-learning in contemporary education: Analyzing trends, challenges, and best practices. Journal of Education and Teaching Learning (JETL), 6(1), 86–105.

Hakimi, N., Hakimi, M., Hejran, M., Quraishi, T., Qasemi, P., Ahmadi, L., & others. (2024). Challenges and opportunities of e-learning for women’s education in developing countries: Insights from Women Online University. EDUTREND: Journal of Emerging Issues and Trends in Education, 1(1), 57–69.

Hasas, A., Hakimi, M., Shahidzay, A. K., & Fazil, A. W. (2024). AI for social good: Leveraging artificial intelligence for community development. Journal of Community Service and Society Empowerment, 2(2), 196–210.

Fazil, A. W., Hakimi, M., Sajid, S., Quchi, M. M., & Khaliqyar, K. Q. (2023). Enhancing internet safety and cybersecurity awareness among secondary and high school students in Afghanistan: A case study of Badakhshan Province. American Journal of Education and Technology, 2(4), 50–61.

Alam, M. I., Khatri, S., Shukla, D. K., Misra, N. K., Satpathy, S., & Hakimi, M. (2025). Blockchain-based coal supply chain management system for thermal power plants. Discover Computing, 28(1), 1–32.