Mona Fikry | Cognitive Neuroscience | Best Academic Researcher Award

Assist. Prof. Dr. Mona Fikry | Cognitive Neuroscience | Best Academic Researcher Award

Assist. Prof. Dr.  Mona Fikry, Faculty of Pharmacy-Cairo University, Egypt.

Dr. Mona Fikry Said, Assistant Professor of Pharmaceutical Chemistry at Cairo University, stands out as a dedicated educator, researcher, and mentor in the field of medicinal chemistry. Her academic journey reflects a blend of deep scientific knowledge and practical teaching expertise. She has supervised numerous postgraduate theses and published extensively in prestigious journals. Her research, particularly in the synthesis and pharmacological evaluation of novel compounds for neurodegenerative diseases, highlights her commitment to addressing real-world health challenges. Beyond her publications, Dr. Said’s influence extends through academic collaboration, curriculum development, and mentorship.

Profile

Google Scholar

🎓 Early Academic Pursuits

Dr. Mona Fikry Said began her academic journey with a strong foundation in pharmaceutical sciences, eventually channeling her passion for medicinal chemistry into advanced academic and research endeavors. Her early commitment to learning laid the groundwork for a career dedicated to both academic excellence and scientific innovation. This formative stage was marked by rigorous study and a growing interest in drug design and discovery, which shaped her professional focus.

🧪 Professional Endeavors

Currently serving as an Assistant Professor of Pharmaceutical Chemistry at the Faculty of Pharmacy, Cairo University, Dr. Said has become a respected educator and mentor in her field. She has been actively involved in teaching a wide array of pharmaceutical chemistry courses and guiding numerous master’s and doctoral students through their theses. Her role extends beyond instruction, as she also participates in academic advising and serves as an external examiner for other institutions.

🔬 Contributions and Research Focus

Dr. Said’s research is deeply rooted in pharmaceutical chemistry, with a particular focus on the development of novel bioactive compounds. Her most recent completed project, “Probing new 3-hydrazinyl indole phenacetamide derivatives as multitarget anti-Alzheimer: Synthesis, in vivo, in vitro, and in silico studies,” exemplifies her multidisciplinary approach to drug discovery. She integrates synthesis, pharmacological testing, and computational modeling to explore new therapeutic avenues, especially for neurodegenerative diseases.

🏅 Accolades and Recognition

While not always publicly documented, Dr. Said’s scientific contributions are widely acknowledged through her publications in high-impact journals such as European Journal of Medicinal Chemistry, Molecular Diversity, Bioorganic Chemistry, and Future Medicinal Chemistry. Her expertise is recognized by her academic peers, and her involvement in national academic programs highlights her standing in the pharmaceutical education community.

🌐 Impact and Influence

Through her publications in SCI and Scopus-indexed journals, Dr. Said has significantly contributed to the body of knowledge in pharmaceutical chemistry. Her work bridges theoretical research and practical applications, influencing both the academic landscape and the early stages of pharmaceutical development. By mentoring postgraduate students and collaborating across institutions, she has helped cultivate a new generation of researchers in Egypt and beyond.

📘 Legacy and Future Contributions

Dr. Said’s lasting impact lies not only in her research but also in her educational leadership. With each class she teaches and each thesis she supervises, she sows the seeds for future advancements in medicinal chemistry. Her continued involvement in clinical academic programs and university examinations ensures that her influence will resonate across institutions for years to come. Looking forward, her research aims to expand into more diverse therapeutic targets, further strengthening Cairo University’s role in pharmaceutical innovation.

🧬 Research Vision in Pharmaceutical Chemistry

With an enduring commitment to discovery, Dr. Mona Fikry Said envisions a research future driven by interdisciplinary collaboration and the integration of cutting-edge techniques. Her dedication to the design and synthesis of multitarget agents reflects a broader mission to combat complex diseases like Alzheimer’s. In doing so, she positions herself at the forefront of modern pharmaceutical chemistry, where innovation and impact go hand in hand.

Publication

  • Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents
    FA Ragab, NMA Gawad, HH Georgey, MF Said
    2013

 

  • Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates
    AM Ghanim, AS Girgis, BM Kariuki, N Samir, MF Said, A Abdelnaser, …
    2022

 

  • Pyrazolone derivatives: Synthesis, anti-inflammatory, analgesic, quantitative structure–activity relationship and in vitro studies
    FAF Ragab, NM Abdel-Gawad, HH Georgey, MF Said
    2013

 

  • Synthesis and selective inhibitory effects of some 2-oxindole benzenesulfonamide conjugates on human carbonic anhydrase isoforms CA I, CA II, CA IX and CAXII
    RF George, MF Said, S Bua, CT Supuran
    2020

 

  • Synthesis, molecular modelling and QSAR study of new N-phenylacetamide-2-oxoindole benzensulfonamide conjugates as carbonic anhydrase inhibitors
    MF Said, RF George, A Petreni, CT Supuran, NM Mohamed
    2022

 

  • Synthesis and molecular docking of new imidazoquinazolinones as analgesic agents and selective COX-2 inhibitors
    HH Hassanein, HH Georgey, MA Fouad, AM El Kerdawy, MF Said
    2017

 

  • New NSAID conjugates as potent and selective COX-2 inhibitors: Synthesis, molecular modeling and biological investigation
    RM Bokhtia, SS Panda, AS Girgis, N Samir, MF Said, A Abdelnaser, …
    2023

 

  • Development of Isatin‐Based Schiff Bases Targeting VEGFR‐2 Inhibition: Synthesis, Characterization, Antiproliferative Properties, and QSAR Studies
    IA Seliem, SS Panda, AS Girgis, QL Tran, MF Said, MS Bekheit, …
    2022

 

  • Synthesis and computational studies of novel fused pyrimidinones as a promising scaffold with analgesic, anti-inflammatory and COX inhibitory potential
    MF Said, HH Georgey, ER Mohammed
    2021

 

  • Novel Curcumin Mimics: Design, Synthesis, Biological Properties and Computational Studies of Piperidone‐Piperazine Conjugates
    MA Youssef, SS Panda, DR Aboshouk, MF Said, A El Taweel, M GabAllah, …
    2022

 

Conclusion

Through her unwavering dedication to pharmaceutical chemistry, Dr. Said has carved out a meaningful role in academia and research. Her work not only advances scientific understanding but also nurtures future innovators in the field. With a strong foundation in both teaching and research, and a vision for multidisciplinary innovation, she is poised to continue making impactful contributions to drug discovery and pharmaceutical education in the years to come.

linlin zhang | physical exercise promote cognition | Best Researcher Award

Dr. Linlin Zhang | physical exercise promote cognition | Best Researcher Award

Dr. linlin zhang, henan normal universoty, China.

Zhang Linlin is a dedicated researcher and educator whose academic journey spans from a strong foundation in physical education to a specialized focus on exercise physiology and neurobiology. Through her undergraduate, master’s, and Ph.D. studies, she has cultivated expertise in the physiological and neurological effects of exercise, particularly in relation to cognitive function and neurodegenerative diseases. Her professional career at Henan Normal University has allowed her to further develop her research while inspiring the next generation of scholars. With an impressive portfolio of publications and accolades, her contributions to the field have significantly enhanced the understanding of exercise as a therapeutic tool for brain health.

Profile

Scopus

✨ Early Academic Pursuits ✨

Zhang Linlin’s journey in academia began with a strong passion for physical education and human science. She pursued her undergraduate studies at Luoyang Normal University, Henan Province, where she earned a degree in Physical Education (2011-2015). This foundational phase allowed her to explore key disciplines such as pedagogy, sports anatomy, and exercise physiology, shaping her understanding of the intricate relationship between physical activity and human health. Fuelled by a desire to deepen her expertise, she continued her education at the Capital Institute of Physical Education (2015-2018), specializing in Sports Human Science for her master’s degree. Here, she refined her knowledge of sports training, rehabilitation, and neurophysiology, setting the stage for her future research endeavors.

🔬 Professional Endeavors 🔬

Zhang Linlin’s commitment to academic excellence led her to pursue a Ph.D. in Sports Human Science at Fujian Normal University (2019-2022), where she engaged in cutting-edge research on exercise physiology and neurobiology. Her doctoral studies provided her with hands-on experience in experimental techniques such as brain localization, microdialysis sampling, Western Blot analysis, and ELISA, equipping her with a robust scientific skillset. Upon completing her Ph.D., she secured a teaching and research position at the School of Physical Education, Henan Normal University (2022-Present), where she continues to inspire students while advancing her research on the intersection of exercise and brain health.

🌍 Contributions and Research Focus 🌍

A central theme in Zhang Linlin’s research is understanding how physical exercise influences brain health, particularly in neurodegenerative and cognitive disorders. She has extensively studied the effects of treadmill exercise and wheel running on synaptic plasticity, neuroinflammation, and neurotransmitter modulation in models of vascular dementia and Alzheimer’s disease. Her work has unveiled critical insights into the neuroprotective mechanisms of exercise, demonstrating its role in enhancing recognition memory, reducing microglial activation, and preserving dopamine and serotonin levels in the brain. By integrating molecular biology and behavioral neuroscience, her research bridges the gap between exercise physiology and neurobiological health.

🌟 Accolades and Recognition 🌟

Zhang Linlin’s outstanding contributions to her field have earned her numerous prestigious awards. She was honored with the Outstanding Graduate Thesis Award in 2022, reflecting the high impact and quality of her research. Additionally, she secured first-class scholarships for graduate students in both 2020-2021 and 2021-2022, a testament to her academic excellence and dedication. In recognition of her potential, she was also selected for the Outstanding Doctoral Dissertation Cultivation Project in 2020, further solidifying her position as a leading researcher in exercise neurobiology.

📚 Impact and Influence 📚

With an impressive publication record, Zhang Linlin has significantly contributed to the scientific community. As the first author, she has published five influential papers, including one SSCI paper, three SCI papers, and one paper in a domestic authoritative core journal. Her research has appeared in prestigious journals such as Scientific Reports, Physiology & Behavior, and Behavioural Brain Research, gaining recognition for its novel findings on exercise-induced neuroprotection. Additionally, she has co-authored multiple studies and played a key role in editing the book Exercise and Health, further extending her impact on the academic and professional domains.

🤖 Legacy and Future Contributions 🤖

Zhang Linlin envisions a future where exercise is widely recognized as a powerful intervention for cognitive and neurological disorders. She aims to continue her research on the molecular pathways through which physical activity enhances brain function, with the goal of translating her findings into clinical applications. By mentoring the next generation of scholars and collaborating with interdisciplinary experts, she seeks to further expand the understanding of exercise physiology in neurological health. Her unwavering dedication to science and education ensures that her legacy will inspire future researchers and health professionals in the pursuit of knowledge and well-being.

 

publication

Title: Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in vascular dementia rat and improved recognition memory

Authors: L. Zhang, Y. Chen, Y. Fan, L. Shi

Year: 2024

🎯 Conclusion 🎯

Zhang Linlin’s research bridges the gap between physical activity and neurobiological health, providing valuable insights into the protective effects of exercise on cognition and neurological disorders. Her work not only advances scientific knowledge but also holds promise for real-world applications in disease prevention and rehabilitation. With a strong commitment to education, research, and innovation, she continues to pave the way for future advancements in exercise neuroscience. As she moves forward in her career, her legacy will undoubtedly inspire further exploration into the powerful connection between movement and brain health.