Mansoor Showkat | Computational Neuroscience | Best Researcher Award

Mr. Mansoor Showkat | Computational Neuroscience | Best Researcher Award

Mr. Mansoor Showkat | SKUAT-Kashmir | India

Mansoor Showkat is a researcher in Plant Biotechnology with an M.Sc. from the University of Agricultural Sciences, Bangalore, and a B.Sc. (Hons.) in Horticulture from Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir. His research expertise spans molecular biology, computational biology, bioinformatics, and tissue culture, with particular emphasis on antifungal compound analysis, gene transformation, and plant-pathogen interactions. Mansoor has contributed to several peer-reviewed publications and book chapters, focusing on the in-silico and in-vitro evaluation of bioactive compounds such as cordycepin, molecular mechanisms of stress responses, and secondary metabolite profiling in plants. His research projects include genetic transformation studies, metabolomics-based investigations, and the use of omics tools for crop improvement. He has actively participated in numerous international workshops, conferences, and webinars related to biotechnology, bioinformatics, and genomics. Mansoor has achieved significant academic recognition, including national rankings in competitive examinations by the Indian Council of Agricultural Research. His scientific impact is reflected by a citation count of 15, an h-index of 2, and an i10-index of 0, highlighting his growing contribution to molecular and agricultural biotechnology research.

Featured Publications

  1. Showkat, M., Narayanappa, N., Umashankar, N., & Saraswathy, B. P., et al. (2024). Optimization of fermentation conditions of Cordyceps militaris and in silico analysis of antifungal property of cordycepin against plant pathogens. Journal of Basic Microbiology, 64(10), e2400409.

  2. Fatimah, N., Ashraf, S., R. U., K. N., Anju, P. B., Showkat, M., Perveen, K., Bukhari, N. A., et al. (2024). Evaluation of suitability and biodegradability of the organophosphate insecticides to mitigate insecticide pollution in onion farming. Heliyon, 10(12).

  3. Margay, K. A. A. A. R., Ashraf, S., Fatimah, N., Jabeen, S. G., & Showkat, M., et al. (2024). Plant circadian clocks: Unravelling the molecular rhythms of nature. International Journal of Plant and Soil Science, 36(8), 596–617.

  4. Margay, A. R., Ashraf, S., Fatimah, N., Jabeen, S. G., Showkat, M., R. U., K. N., Gani, A., et al. (2024). Harnessing brassinosteroids for heat resilience in wheat: A comprehensive study.

  5. Showkat, M., Nagesha, N., Ashraf, S., Nayana, K., Bashir, S., Nair, A. S., et al. (2024). Cordycepin: A molecular Trojan horse against Fusarium oxysporum f. sp. cubense—A computational perspective.

Masoud Kargar | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Masoud Kargar | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Masoud Kargar | Islamic Azad University | Iran

Dr. Masoud Kargar is an Assistant Professor in the Department of Computer Engineering at Islamic Azad University, Tabriz Branch, specializing in artificial intelligence, machine learning, reinforcement learning, and software system engineering. He earned his bachelor’s degree in applied mathematics, master’s degree in software engineering, and Ph.D. in software engineering with a focus on modularization of multi-programming software systems. Dr. Kargar has extensive academic experience, having taught a wide range of undergraduate, master’s, and doctoral courses in advanced programming, algorithms, software engineering, data mining, big data, project management, and natural language processing across multiple universities. He also serves as the Director of Information and Communication Technology and leads the development of various software systems. Dr. Kargar is a member of the editorial board of the Iranian Journal of Computer Science (Springer) and has published 19 documents, which have been cited 89 times, giving him an h-index of 6. His research contributions have significantly advanced the fields of machine learning and software engineering, and his academic leadership continues to inspire both students and colleagues. Dr. Kargar remains committed to fostering innovation and excellence in computer engineering education and research.

Profiles: Scopus | Google Scholar | Orcid | Research Gate

Featured Publications

Karegar, M., Isazadeh, A., Fartash, F., Saderi, T., & Navin, A. H. (2008). Data-mining by probability-based patterns. Proceedings of the 30th International Conference on Information Technology Interfaces, 28.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2019). Multi-programming language software systems modularization. Computers & Electrical Engineering, 80, 106500.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2017). Semantic-based software clustering using hill climbing. 2017 International Symposium on Computer Science and Software Engineering.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2020). Improving the modularization quality of heterogeneous multi-programming software systems by unifying structural and semantic concepts. Journal of Supercomputing, 76(1), 17.

Navin, A. H., Fesharaki, M. N., Mirnia, M., & Kargar, M. (2007). Modeling of random variable with digital probability hyper digraph: Data-oriented approach. Proceedings of World Academy of Science, Engineering and Technology, 25, 25.

Bayani, A., & Kargar, M. (2024). LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network. Physiological Reports, 12(17), e16182.

Karegar, M., Saderi, T., Isazadeh, A., & Fartash, F. (2008). Electronic consulting in marketing. 2008 3rd International Conference on Information and Communication Technology, 5.

Abdullah Alghamdi | Emerging Areas in Neuroscience | Best Researcher Award

Mr. Abdullah Alghamdi | Emerging Areas in Neuroscience | Best Researcher Award

Mr. Abdullah Alghamdi, University of Birmingham (UK) and Taibah University (Saudi Arabia),  United Kingdom.

Eng. Abdullah A. Zohaid (SMIEEE, SMIET) is an accomplished electrical engineer and academic with a specialization in Smart Power Systems, focusing on electric vehicles, AI-integrated transportation systems, and sustainable smart city infrastructure. With a solid educational foundation—earning distinctions at every academic level—he has seamlessly merged academic excellence with real-world engineering experience. From his early career at Saudi Aramco to his dual lecturing roles at Taibah University and the University of Birmingham, Abdullah has built a reputation as a forward-thinking researcher, educator, and strategist. His work bridges technical innovation with societal needs, aiming to optimize power grids and energy systems for a sustainable future.

Profile

Google Scholar

🎓 Early Academic Pursuits

From the historic city of Medina, Saudi Arabia, Eng. Abdullah A. Zohaid embarked on his academic journey in Electrical Engineering at Taibah University, where his talent and determination earned him distinction in his final project. His academic passion soon carried him to the United Kingdom, where he pursued an MSc in Electrical Power Systems at the University of Birmingham, graduating with First-Class Honors and distinction. Abdullah’s unwavering commitment to academic excellence continued as he embarked on a Ph.D. in Smart Power Systems at the same institution. Excelling in all areas, he has distinguished himself through both research prowess and scholastic achievement.

⚡ Professional Endeavors

Eng. Alghamdi has established himself as a dynamic professional straddling the worlds of academia and industry. His journey began with Saudi Aramco’s Dodsal Company, contributing to the vital 56″ Gas Pipeline project as an assistant electrical engineer. He transitioned into academia with his role as a Lecturer at Taibah University in Yanbu and later joined the University of Birmingham as a faculty member. Balancing dual academic roles in Saudi Arabia and the UK, Abdullah has developed a unique global perspective, blending practical engineering insight with cutting-edge educational delivery. His presence as an educator underscores his belief in empowering future engineers with real-world readiness.

🔬 Contributions and Research Focus

A scholar deeply embedded in the future of sustainable power, Eng. Alghamdi’s research focuses on Smart Power Systems, electric vehicles, smart charging infrastructures, and the integration of AI in intelligent transportation systems. Through his ongoing Ph.D. research, he explores how emerging technologies can enhance smart grid resilience and contribute to the development of smart cities. He utilizes advanced simulation and optimization tools such as MATLAB/SIMULINK, Python, and Gurobi, combined with machine learning techniques (ANN/CNN), to propose innovative solutions that address pressing energy challenges. His passion for sustainability is evident in his contributions to the global energy discourse, especially in urban mobility and decarbonization.

🏆 Accolades and Recognition

Eng. Zohaid’s career is adorned with recognition and academic milestones. His consistent distinction in every academic phase, including honors during both his MSc and Ph.D. studies, reflects a sustained trajectory of excellence. As a senior member of prestigious engineering bodies like IEEE and IET, and a certified Professional Engineer by the Saudi Council of Engineers, his credentials are a testament to his standing in the professional community. Furthermore, his publications in Q1 journals and contributions to leading international conferences validate the depth of his research and the quality of his scholarly communication.

🌍 Impact and Influence

With affiliations across IEEE working groups and university research circles, Eng. Alghamdi’s influence spans global academic and professional spheres. As a presenter and contributor at numerous high-level conferences — from the IEEE Power & Energy Society to Net Zero Futures and Saudi Innovation events — he has played a key role in shaping conversations on smart energy. His multidisciplinary expertise allows him to drive collaborations across AI, optimization, and power systems, impacting both policy and practice. His ability to simplify complex engineering concepts and communicate them effectively has enabled him to become a trusted voice among peers and students alike.

💡 Innovation and Strategic Vision

Abdullah’s strength lies in visionary thinking and strategic problem-solving. He doesn’t merely research problems—he crafts systems and strategies that reflect future-forward thinking. His approach to sustainable urban infrastructure blends technological acumen with strategic planning, leadership, and innovation. As an educator and researcher, he fosters environments that promote critical thinking and team-based innovation, cultivating the next generation of engineers equipped to face tomorrow’s challenges. His work on smart charging and intelligent transportation embodies the essence of transformative impact through design thinking and systems innovation.

🚀 Legacy and Future Contributions

Looking ahead, Eng. Abdullah A. Zohaid is poised to leave a lasting legacy in the realm of smart power systems and urban sustainability. His dual role as a lecturer and researcher gives him a powerful platform to shape both academic knowledge and real-world applications. With his continued focus on electrification, smart mobility, and AI-driven infrastructure, he is on track to influence policy, inspire innovation, and expand the boundaries of what is possible in modern power systems. His legacy will be defined not only by the technologies he helps build but also by the students and professionals he inspires along the way.

Publication

  • Innovative Prepositioning and Dispatching Schemes of Electric Vehicles for Smart Distribution Network Resiliency and Restoration
    AAM Alghamdi, D. Jayaweera, 2022

 

  • Resilience of Modern Power Distribution Networks with Active Coordination of EVs and Smart Restoration
    AAM Alghamdi, D. Jayaweera, 2023

 

  • Modelling Frameworks Applied in Smart Distribution Network Resiliency and Restoration
    AAM Alghamdi, D. Jayaweera, 2022

 

  • Resilience-Oriented Restoration in Modern Power Distribution Networks with Smart Electric Vehicles Coordination Framework
    A. Alghamdi, D. Jayaweera, 2023

 

  • Risk and Resilience Based Residential Electric Vehicle Integration Framework for Restoration of Modern Power Distribution Networks
    A. Alghamdi, D. Jayaweera, 2025

 

  • Electric Boats and Electric Vehicles Data-Driven Approach for Enhanced Resilience in Power Distribution Networks
    AAM Alghamdi, D. Jayaweera, 2025

 

✅ Conclusion

Eng. Alghamdi stands at the forefront of energy transformation, using research, innovation, and teaching as tools to drive meaningful change. His contributions reflect a blend of technical mastery and visionary leadership, enabling progress in smart mobility, clean energy, and intelligent infrastructure. With a growing portfolio of Q1 publications, prestigious memberships, and impactful conference roles, he continues to influence the field of electrical engineering on a global scale. As he advances in his career, his legacy will be marked by both technological advancements and the future minds he mentors—solidifying his role as a transformative figure in the evolution of smart power systems.

Irena Roterman | Computational Neuroscience | Best Researcher Award

Prof. Dr. Irena Roterman | Computational Neuroscience | Best Researcher Award

Prof. Dr. Irena Roterman, Jagiellonian University Medical College, Poland.

Prof. Irena Roterman-Konieczna is a distinguished scientist whose academic roots in theoretical chemistry and biochemistry evolved into groundbreaking contributions in bioinformatics. With a Ph.D. and habilitation in biochemistry, and a postdoctoral fellowship at Cornell University, she developed a unique perspective on protein structure and folding. Her most notable innovation is the Fuzzy Oil Drop (FOD) model, which simulates protein folding by incorporating environmental effects using a 3D Gaussian function to map hydrophobicity distribution. This model has wide applicability—from understanding membrane proteins and amyloids to analyzing domain-swapping and receptor anchoring.

Profile

Scopus

 

🎓 Early Academic Pursuits

Irena Roterman-Konieczna began her academic journey in theoretical chemistry at the prestigious Jagiellonian University, graduating from the Faculty of Chemistry in 1974. Her early interest in molecular structure and the physicochemical underpinnings of biological systems laid a strong foundation for her interdisciplinary career. She deepened her scientific expertise by earning a Ph.D. in biochemistry in 1984 from Nicolaus Copernicus Medical Academy in Krakow, focusing on the structure of the recombinant IgG hinge region. Her postdoctoral studies at Cornell University from 1987 to 1989, under the mentorship of Harold A. Scheraga, further shaped her academic development. There, she explored force fields used in prominent computational programs like AMBER, CHARMM, and ECEPP, bridging theoretical modeling with biomolecular reality.

🧬 Professional Endeavors in Bioinformatics

Throughout her career, Prof. Roterman-Konieczna has been at the forefront of bioinformatics, dedicating herself to unraveling the mysteries of protein structure and amyloid formation. Following her habilitation in biochemistry at the Jagiellonian University Faculty of Biotechnology in 1994 and the conferment of her professorial degree in medical sciences in 2004, she continued to pioneer innovative methods in structural bioinformatics. Her hallmark contribution, the Fuzzy Oil Drop (FOD) model, revolutionized the understanding of protein folding. The model uniquely incorporates environmental influence into folding simulations by using a 3D Gaussian function to describe hydrophobicity distribution—proposing that hydrophobic residues form a central core while hydrophilic residues remain exposed. This paradigm introduced a more realistic, dynamic framework for simulating in silico protein folding.

🧪 Contributions and Research Focus

Prof. Roterman-Konieczna’s research has explored how proteins behave not only in aqueous environments but also within membranes and under the influence of external force fields. By modifying the Gaussian-based FOD model, she extended its applicability to membrane proteins, enabling quantification of their anchoring mechanisms and mobility. Her investigations into chaperonins and domain-swapping phenomena further illustrate the power of her model to decode complex folding and protein-protein interactions. She introduced a dual-variable simulation function—accounting for both internal forces (non-bonded interactions within the protein chain) and external forces (environmental effects)—to guide structural transformation toward energy minima. These ideas are foundational in modern computational biology, where realistic folding predictions are critical for understanding disease mechanisms and therapeutic targeting.

📘 Scholarly Publishing and Intellectual Outreach

A prolific author, Prof. Roterman-Konieczna has made significant contributions to scientific literature. She has authored several influential books, many published in Open Access to promote knowledge sharing. These works include “Protein Folding In Silico” (Elsevier), “Systems Biology – Functional Strategies of Living Organism” (Springer), and “From Globular Proteins to Amyloids” (Elsevier, 2020). Her books elegantly communicate complex bioinformatic strategies, such as ligand binding site identification, protein-protein interactions, and computer-aided diagnostics. Moreover, her editorial leadership from 2005 to 2020 as Chief Editor of the journal Bio-Algorithms and Med-Systems cemented her influence in shaping interdisciplinary dialogues at the intersection of medicine, biology, and computation.

🏆 Accolades and Recognition

Prof. Roterman-Konieczna’s work has earned international acclaim. Notably, she is listed among the Top 2% scientists worldwide by Stanford University and Elsevier—a testament to her influential research and academic reputation. With 149 publications indexed in PubMed, her impact on the bioinformatics community is both broad and profound. Over the course of her career, she has also served as a mentor to 14 doctoral students, many of whom continue to contribute to research and innovation across various fields of biomedicine.

🌐 Impact and Influence

Her research has advanced global understanding of how proteins fold, interact, and misfold—a process central to neurodegenerative diseases such as Alzheimer’s. The FOD model continues to provide a computational lens for studying amyloid formation and supramolecular assemblies. Her model is also pivotal in studying receptor anchoring in membranes and exploring domain-swapping mechanisms critical to protein complex formation. By integrating thermodynamic theory, statistical modeling, and structural biology, her work bridges theoretical research with biomedical applications, pushing the boundaries of in silico experimentation.

🧭 Legacy and Future Contributions

Prof. Irena Roterman-Konieczna’s legacy is rooted in her visionary approach to molecular biology, championing models that blend computational precision with biological realism. Her commitment to open access publishing and academic mentoring reflects a deep dedication to inclusive, sustainable scientific progress. As systems biology and personalized medicine continue to evolve, her models and insights will remain cornerstones for future explorations in disease modeling, drug design, and molecular diagnostics. Her career exemplifies how interdisciplinary thinking and computational ingenuity can transform the life sciences, leaving a legacy that will guide future generations of scientists.

Publication

  • Title: Aquaporins as Membrane Proteins: The Current Status
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), G. Szoniec (Grzegorz), L. Konieczny (Leszek)
    Year: 2025

 

  • Title: DisorderUnetLM: Validating ProteinUnet for efficient protein intrinsic disorder prediction
    Authors: K. Kotowski (Krzysztof), I.K. Roterman (Irena K.), K. Stapor (Katarzyna)
    Year: 2025

 

  • Title: Protein folding: Funnel model revised
    Authors: I.K. Roterman (Irena K.), M. Slupina (Mateusz), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Domain swapping: a mathematical model for quantitative assessment of structural effects
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Chameleon Sequences─Structural Effects in Proteins Characterized by Hydrophobicity Disorder
    Authors: I.K. Roterman (Irena K.), M. Slupina (Mateusz), K. Stapor (Katarzyna), K. Gądek (Krzysztof), P. Nowakowski (Piotr)
    Year: 2024

 

  • Title: Transmembrane proteins—Different anchoring systems
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: External Force Field for Protein Folding in Chaperonins─Potential Application in In Silico Protein Folding
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Structural features of Prussian Blue-related iron complex FeT of activity to peroxidate unsaturated fatty acids
    Authors: M. Lasota (Małgorzata), G. Zemanek (Grzegorz), O. Barczyk-Woźnicka (Olga), L. Konieczny (Leszek), I.K. Roterman (Irena K.)
    Year: 2024

 

  • Title: Editorial: Structure and function of trans-membrane proteins
    Authors: I.K. Roterman (Irena K.), M.M. Brylinski (Michal Michal), F. Polticelli (Fabio), A.G. de Brevern (Alexandre G.)
    Year: 2024

 

  • Title: Model of the external force field for the protein folding process—the role of prefoldin
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), L. Konieczny (Leszek)
    Year: 2024

 

🧠 Conclusion

Prof. Roterman-Konieczna’s career stands as a testament to how deep scientific insight and computational innovation can revolutionize biological understanding. Her FOD model not only enriches the study of protein dynamics but also provides a versatile framework for medical and pharmaceutical applications. With a legacy built on rigorous research, educational outreach, and academic leadership, her influence will continue to guide future advances in molecular biology, bioinformatics, and biomedical science.

 

Yuchun Wang | Neurotechnology | Best Researcher Award

Ms. Yuchun Wang | Neurotechnology | Best Researcher Award

Ms. Yuchun Wang, Fudan University, China.

Yu Chun Wang is an emerging scholar from the Department of Rehabilitation Medicine at Huashan Hospital, Fudan University, with a strong academic foundation and a clear research direction. Their work revolves around neurological rehabilitation and the rapidly evolving field of brain-computer interfaces (BCI). With a multidisciplinary approach, Yu Chun integrates neuroscience, rehabilitation techniques, and cutting-edge technology to address the needs of individuals recovering from neurological impairments. Though still early in their academic journey, Yu Chun is already contributing to high-quality research, fostering collaborations, and preparing to lead innovative projects that bridge clinical rehabilitation and intelligent systems.

Profile

Orcid

🎓 Early Academic Pursuits

Yu Chun Wang began their academic journey at the esteemed Fudan University, where they enrolled in the Department of Rehabilitation Medicine at Huashan Hospital. With a strong interest in human recovery and assistive technology, Yu Chun immersed themselves in foundational studies that emphasized neurophysiology, biomedical sciences, and rehabilitation techniques. From the outset, they demonstrated an analytical mind and a passion for exploring innovative solutions to neurological challenges, setting the stage for a research-focused career.

🧠 Professional Endeavors in Neurological Rehabilitation

Currently positioned as a student-researcher, Yu Chun Wang has dedicated their academic life to advancing the field of neurological rehabilitation. At Huashan Hospital, their role involves deep engagement with real-world clinical settings, working alongside experts in neurology and rehabilitation. Their work primarily focuses on enhancing patient recovery through the integration of modern therapeutic interventions and monitoring neuroplasticity in patients recovering from brain injuries.

🧬 Contributions and Research Focus

Yu Chun’s research journey centers around two compelling fields: neurological rehabilitation and brain-computer interface (BCI) systems. With a growing expertise in neuro-rehabilitation technologies, they aim to bridge the gap between cognitive recovery and artificial intelligence. Their innovative explorations delve into how BCI can transform therapeutic outcomes, empowering individuals with neuro-disorders through intelligent, responsive systems that adapt to brain activity and stimulate recovery.

📚 Academic Footprints and Publications

While Yu Chun is in the early stages of their scholarly journey, their commitment to publishing in high-impact journals indexed by SCI and Scopus is evident. Their academic work, though emerging, has begun making its mark in interdisciplinary forums focused on neural engineering and rehabilitation sciences. These publications are paving the way for greater academic discourse in merging digital systems with patient care strategies.

🤝 Collaborations and Industry Interaction

Yu Chun Wang actively seeks collaborative networks within the medical and engineering sectors. Their current projects involve interdisciplinary collaboration, including clinical therapists, software developers, and neuroscientists. Although industry consultancy and patents are still developing areas, Yu Chun’s research has laid the groundwork for future partnerships aimed at developing therapeutic technologies for real-time rehabilitation assessment.

🏅 Accolades and Recognition

As a young researcher, Yu Chun’s contributions have been recognized within their academic institution and by their peers in scientific circles. Participation in research competitions and early recognition for innovative proposals in brain-computer interface models speak volumes about their potential. The Department of Rehabilitation Medicine supports and acknowledges Yu Chun’s promising role in the field’s evolution.

🔭 Legacy and Future Contributions

With a vision to transform rehabilitation through intelligent systems, Yu Chun Wang aspires to lead groundbreaking research that improves the quality of life for patients with neurological impairments. They aim to contribute to the development of non-invasive BCI tools that integrate with clinical workflows, offering efficient and patient-centric recovery models. Their journey is just beginning, yet the foundation laid speaks of a future filled with impactful innovations and global collaborations.

Publication

  • Title: Advances in Brain Computer Interface for Amyotrophic Lateral Sclerosis Communication
    Author(s): Yuchun Wang
    Year: 2024 (assumed)

 

  • Title: Soft Magnetoelasticity for Mechanical Energy Harvesting
    Author(s): Yuchun Wang, Minyan Ge, Shumao Xu
    Year: 2024 (assumed)

 

  • Title: Water-responsive Contraction for Shape-adaptive Bioelectronics
    Author(s): Yuchun Wang, Minyan Ge, Shumao Xu
    Year: 2024 (assumed)

 

✅ Conclusion

Yu Chun Wang represents the next generation of medical researchers who combine scientific curiosity with technological vision. With a focus on patient-centered innovation and a drive to improve neurological rehabilitation outcomes through brain-computer interface research, their future in academic and applied science is bright. As they continue to grow in experience and scholarly achievement, Yu Chun is poised to make lasting contributions to the global healthcare and rehabilitation community.

 

 

Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr. Koagne Longpa Tamo Silas | Neuroinformatics | Pioneer Researcher Award

Mr.  Koagne Longpa Tamo Silas, University of Dschang, Cameroon.

Koagne Longpa Tamo Silas is a dedicated researcher in the field of medical physics, specializing in automation, artificial intelligence, and electronic system design. His academic journey from Bamenda State University to Dschang State University reflects his continuous pursuit of knowledge and innovation. His contributions to circuit simulation, embedded systems, and artificial neural networks have established him as a promising figure in medical physics.

Profile

Google Scholar

🎓 Early Academic Pursuits

Born on July 12, 1998, in Mbouda, Cameroon, Koagne Longpa Tamo Silas displayed a keen interest in science and technology from a young age. His passion for physics and engineering led him to pursue higher education at Bamenda State University, where he embarked on an academic journey in Electrical and Power Engineering. His undergraduate studies, from November 2015 to August 2018, laid the foundation for his expertise in electrical systems, automation, and circuit design. Eager to expand his knowledge, he continued his postgraduate studies in the same field at Bamenda State University from September 2018 to July 2020, honing his skills in power engineering and applied electronics.

🚀 Professional Endeavors

Determined to deepen his expertise, Koagne Longpa Tamo Silas transitioned into the field of physics, enrolling as a Ph.D. student at Dschang State University in December 2022. His academic pursuits in the Department of Physics align with his interests in medical physics, where he integrates automation, applied computer science, and electronics to innovate in the field. As a dedicated researcher, he continues to engage with the Faculty of Science at Dschang State University, contributing to the academic and scientific community with his research in medical physics and embedded systems.

🤖 Contributions and Research Focus

Koagne Longpa Tamo Silas has dedicated his research efforts to the intersection of medical physics, automation, and artificial intelligence. His work encompasses Analog Artificial Neural Networks, Embedded Systems, Circuit Simulation, Digital and Analog Electronics, and Microcontroller Programming. His proficiency in tools like Spice Simulation, Cadence Virtuoso, and Electronic Design Automation allows him to design and optimize medical devices and automated systems. His research aims to enhance diagnostic and therapeutic tools in medical physics by leveraging artificial intelligence and embedded systems.

🏆 Accolades and Recognition

Throughout his academic and research career, Koagne Longpa Tamo Silas has garnered recognition for his contributions to medical physics and electronics. His innovative approach to circuit simulation and signal processing has positioned him as a promising researcher in his field. His dedication to advancing medical technologies has earned him the respect of his peers and mentors, as he continues to contribute valuable insights to the scientific community.

🌐 Impact and Influence

Through his academic journey and research, Koagne Longpa Tamo Silas has influenced the way automation and artificial intelligence are integrated into medical physics. His work in digital electronics and microcontroller programming is paving the way for innovative solutions in the medical field. His contributions extend beyond research, as he actively engages with students and researchers, fostering a culture of knowledge-sharing and scientific exploration.

 

Publication

  • A High-Resolution Non-Volatile Floating Gate Transistor Memory Cell for On-Chip Learning in Analog Artificial Neural Networks
    Authors: KLT Silas, DTA Bernard, FT Bernard, L Jean-Pierre, GW Ejuh
    Year: 2025

 

  • Breast Cancer Diagnosis with Machine Learning Using Feed-Forward Multilayer Perceptron Analog Artificial Neural Network
    Authors: B Djimeli-Tsajio Alain, KLT Silas, LT Jean-Pierre, N Thierry, GW Ejuh
    Year: 2024

 

  • Design and Implementation of a Digital Breath Alcohol Detection System with SMS Alert and Vehicle Tracking on Google Map
    Author: KLT Silas
    Year: 2020

 

  • Design and Realization of an Electronic Attendance System Based on RFID with an Automatic Door Unit
    Author: MK Jules
    Year: 2018

 

🎯 Conclusion

With a vision to transform medical physics through automation and AI-driven technologies, Koagne Longpa Tamo Silas is on a path to making significant contributions to healthcare innovation. His passion, dedication, and expertise ensure that his research will continue to shape the future of medical technology, leaving a lasting impact on both academia and practical applications in the field.

 

Xiaobing Yan | Neurotechnology | Best Researcher Award

Prof. Xiaobing Yan | Neurotechnology | Best Researcher Award

Prof. Xiaobing Yan, Hebei University, China.

Professor Xiaobing Yan is a distinguished researcher specializing in novel memory devices and memristor-based brain-inspired chip technologies. As a Senior Member of IEEE and a reviewer for leading journals, he has made significant contributions to the field of neuromorphic engineering. His outstanding achievements include recognition as a Young Changjiang Scholar and a Young Top-notch Talent under China’s National Ten Thousand Talents Program. With over 120 high-impact publications, 5,600+ citations, and an H-index of 40, he is globally recognized among the top 2% of scientists. His research has been supported by several prestigious national and provincial funding programs.

Profile

Scopus

🎓 Early Academic Pursuits

Xiaobing Yan embarked on his academic journey with a deep passion for electronics and information engineering. His early years were marked by an unwavering dedication to understanding the complexities of memory devices and neuromorphic systems. As he progressed through his studies, his curiosity and drive led him to explore the intersection of artificial intelligence and hardware development. His rigorous academic training laid a solid foundation for his future contributions to next-generation computing technologies.

💪 Professional Endeavors

Currently serving as a Professor at the Institute of Life Science and Green Development, Hebei University, Xiaobing Yan has established himself as a distinguished leader in the field of electronic engineering. He is a Doctoral Supervisor and a Senior Member of IEEE, a testament to his vast expertise and influence in the scientific community. His role extends beyond academia, as he actively engages in national-level research programs and collaborates with top-tier research institutions. His professional journey is a testament to his commitment to pioneering advancements in neuromorphic computing and memristor-based brain-inspired chip technologies.

🤖 Contributions and Research Focus

Xiaobing Yan’s research primarily revolves around novel memory devices and brain-like computing systems. His work has been instrumental in the advancement of memristor-based chip technologies, which hold the potential to revolutionize artificial intelligence hardware. By bridging the gap between neuroscience and semiconductor innovation, he is contributing to the development of energy-efficient, high-performance computing architectures. His research projects, funded by prestigious national programs, aim to push the boundaries of nanoelectronics and intelligent systems.

🏆 Accolades and Recognition

Xiaobing Yan’s groundbreaking work has earned him widespread recognition. In 2019, he was honored as a Young Changjiang Scholar by the Ministry of Education and selected as a Young Top-notch Talent under the National Ten Thousand Talents Program. In 2024, he further cemented his legacy by winning the Excellence Award at the National Disruptive Innovation Technology Competition. His contributions are not only recognized in China but also on a global scale, as he has been listed among the top 2% of scientists worldwide by Stanford University.

🌟 Impact and Influence

With over 120 high-impact publications and more than 5,600 citations, Xiaobing Yan’s research has significantly shaped the field of electronics and artificial intelligence. His H-index of 40 reflects the depth and relevance of his contributions. As a reviewer for prestigious journals such as Nature Electronics, Advanced Materials, and ACS Nano, he plays a crucial role in shaping the direction of cutting-edge research. His influence extends beyond his publications, as he mentors young researchers and fosters collaborations that drive innovation in neuromorphic computing.

🚀 Legacy and Future Contributions

As a leader in disruptive technology and nanoelectronics, Xiaobing Yan is poised to continue pushing the boundaries of scientific discovery. His ongoing research projects, including multiple National Key R&D initiatives and collaborations with leading institutions, demonstrate his commitment to pioneering breakthroughs in brain-inspired computing. With his vision and expertise, he is set to leave a lasting legacy in the development of next-generation intelligent systems, shaping the future of artificial intelligence and semiconductor technology.

Publication

  1. In situ training of an in-sensor artificial neural network based on ferroelectric photosensors

    • Authors: H. Lin, Haipeng; J. Ou, Jiali; Z. Fan, Zhen; X. Gao, Xingsen; J. Liu, Junming
    • Year: 2025

 

  1. Ultra robust negative differential resistance memristor for hardware neuron circuit implementation

    • Authors: Y. Pei, Yifei; B. Yang, Biao; X. Zhang, Xumeng; S. Li, Shushen; X. Yan, Xiaobing
    • Year: 2025

 

  1. Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models

    • Authors: W. Yue, Wenshuo; K. Wu, Kai; Z. Li, Zhiyuan; R. Huang, Ru; Y. Yang, Yuchao
    • Year: 2025

 

  1. Memristor-based feature learning for pattern classification

    • Authors: T. Shi, Tuo; L. Gao, Lili; Y. Tian, Yang; X. Yan, Xiaobing; Q. Liu, Qi
    • Year: 2025

 

  1. Harnessing spatiotemporal transformation in magnetic domains for nonvolatile physical reservoir computing

    • Authors: J. Zhou, Jing; J. Xu, Jikang; L. Huang, Lisen; X. Yan, Xiaobing; S.T. Lim, Sze Ter
    • Year: 2025

 

  1. Flexoelectric Effect in Thin Films: Theory and Applications

    • Authors: X. Jia, Xiaotong; R. Guo, Rui; J. Chen, Jingsheng; X. Yan, Xiaobing
    • Year: 2025

 

  1. Deoxyribonucleic acid brick crystals-based memristor as an artificial synapse for neuromorphic computing

    • Authors: Z. Wang, Zhongrong; X. Liu, Xinran; J. Li, Jiahang; J. Lou, Jianzhong; X. Yan, Xiaobing
    • Year: 2025

 

  1. Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors

    • Authors: Z. Guo, Zhenqiang; G. Duan, Guojun; Y. Zhang, Yinxing; Y. Faraj, Yousef; X. Yan, Xiaobing
    • Year: 2025

 

  1. Achieving over 10 % efficiency in kesterite solar cells via selenium-free annealing

    • Authors: Q. Zhou, Qing; Y. Cong, Yijia; H. Li, Hao; Y. Sun, Yali; W. Yu, Wei
    • Year: 2024

 

  1. Hardware implementation of memristor-based artificial neural networks

  • Authors: F.L. Aguirre, Fernando L.; A. Sebastian, Abu; M. Le Gallo, Manuel; S. Matias Pazos, Sebastian; M. Lanza, Mario
  • Year: 2024

 

Conclusion

Professor Yan’s work plays a pivotal role in advancing memory technology and brain-inspired computing. His extensive research contributions and leadership in high-impact projects underscore his expertise in developing next-generation computing technologies. His global recognition and numerous accolades highlight his influence in the field, positioning him as a key figure in neuromorphic engineering and memory device innovation.

 

 

Chen Wang | neural network application | Best Researcher Award

Prof Dr.Chen Wang | neural network application | Best Researcher Award

Prof Dr Chen Wang School of Mining, Guizhou University China

Wang Chen is a distinguished professor at Guizhou University, specializing in mining engineering and resources and environment. He holds a PhD from the China University of Mining and Technology and has significant expertise in mining methods, rock mechanics, mining system engineering, and the kinematic behavior of rock layers in karst regions.

profile

scopus

📚 Recruitment Discipline Direction

Mining Engineering, Resources and Environment

🔬 Main Research Fields and Directions

Mining Methods,Rock Mechanics,Mining System Engineering,Roadway Support,Kinematic Mechanisms of Rock Layers in Karst Mountainous Areas.

💼 Key Research Projects (2018 – Present)

National Natural Science Foundation General Project (52174072)“Study on the Mechanisms of Rock Layer Movement under Repeated Mining in Karst Mountainous Areas,” 2022.01-2025.12, 580,000 RMB, Principal Investigator, ongoing. 💰National Natural Science Foundation Youth Science Fund Project (51904081)“Study on the Mechanisms of Instability Induced by Mining in Shallowly Buried Coal Layers in Karst Terrain,” 2020.01-2022.12, 240,000 RMB, Principal Investigator, ongoing. 🔍

✍️ Journal Articles:

Wang Chen et al. “An Expert System for Equipment Selection of Thin Coal Seam Mining.” (2019) .Wang Chen et al. “Optimal Selection of a Longwall Mining Method for a Thin Coal Seam Working Face.” (2016) .Wang Chen, Zhou Jie. “New Advances in Automatic Shearer Cutting Technology.” (2021) ⚙️

🥇 Achievements

Patents: 5 granted invention patents related to coal mining technology. Awards: Multiple research awards for contributions to mining technology. 🏆

📚 Publications

  1. Title: Study on strength prediction and strength change of Phosphogypsum-based composite cementitious backfill based on BP neural network
    Authors: Wu, M., Wang, C., Zuo, Y., Zhang, J., Luo, Y.
    Year: 2024
    Journal: Materials Today Communications
    Volume: 41
    Article Number: 110331

 

  1. Title: Correction: Determination of working resistance of support parameter variation of large mining height support: the case of Caojiatan coal mine
    Authors: Xue, B., Zhang, W., Wang, C.
    Year: 2024
    Journal: Geomechanics and Geophysics for Geo-Energy and Geo-Resources
    Volume: 10
    Issue: 1
    Pages: 14

 

  1. Title: Determination of working resistance of support parameter variation of large mining height support: the case of Caojiatan coal mine
    Authors: Xue, B., Zhang, W., Wang, C.
    Year: 2024
    Journal: Geomechanics and Geophysics for Geo-Energy and Geo-Resources
    Volume: 10
    Issue: 1
    Pages: 1

 

  1. Title: Evolution of Broken Coal’s Permeability Characteristics under Cyclic Loading–Unloading Conditions
    Authors: Luo, L., Zhang, L., Pan, J., Wang, C., Li, S.
    Year: 2024
    Journal: Natural Resources Research
    Volume: 33
    Issue: 5
    Pages: 2279–2297

 

  1. Title: Preparation and characterization of green lignin modified mineral cementitious firefighting materials based on uncalcined coal gangue and coal fly ash
    Authors: Dou, G., Wang, C., Zhong, X., Qin, B.
    Year: 2024
    Journal: Construction and Building Materials
    Volume: 435
    Article Number: 136799

 

  1. Title: Mining Technology Evaluation for Steep Coal Seams Based on a GA-BP Neural Network
    Authors: Li, X., Wang, C., Li, C., Luo, Y., Jiang, S.
    Year: 2024
    Journal: ACS Omega
    Volume: 9
    Issue: 23
    Pages: 25309–25321

 

  1. Title: Capturing rate- and temperature-dependent behavior of concrete using a thermodynamically consistent viscoplastic-damage model
    Authors: Tao, J., Yang, X.-G., Lei, Y., Wang, C.
    Year: 2024
    Journal: Construction and Building Materials
    Volume: 422
    Article Number: 135791

Conclusion

Wang Chen’s extensive research and numerous publications significantly contribute to the field of mining engineering. His focus on the complexities of karst geology and the development of intelligent mining technologies positions him as a leader in advancing mining safety and efficiency. His ongoing projects reflect a commitment to addressing contemporary challenges in the mining sector, particularly in relation to environmental sustainability and resource management.