Dongxia Zhu | Neurogenetics | Best Researcher Award

Prof. Dongxia Zhu | Neurogenetics | Best Researcher Award

Prof. Dongxia Zhu | The Northeast Normal University | China

Prof. Dongxia Zhu is a full professor in the Department of Chemistry at Northeast Normal University, specializing in functional organic and polymeric photoelectric materials and devices. She earned her Ph.D. in Chemistry under the supervision of Prof. Zhong-Min Su at NENU and pursued joint doctoral research at Jilin University under Prof. Yue Wang. She also served as an academic visitor at Durham University, UK, collaborating with Prof. Martin R. Bryce and Prof. Todd B. Marder. Prof. Zhu has conducted extensive research on the design and development of high-performance luminescent materials, leading to the creation of highly selective and sensitive fluorescent and phosphorescent probes applied in photodynamic cancer therapy, biological imaging, and luminescence sensing. She has completed 12 research projects, published 50 SCI-indexed papers, authored one book chapter, and holds 12 patents. Her scholarly work has achieved 4,574 citations across 3,698 documents, with 123 publications and an h-index of 38. Prof. Zhu is an active member of the Chinese Chemical Society, contributing significantly to advancements in luminescent materials and their biomedical and photoelectric applications.

Profile: Scopus

Featured Publications

Wang, Z., Li, Y., Zhang, H., Jiang, N., Xu, J., Zhu, D., & Bryce, M. R. (2025). Non-traditional luminescent polyurethanes of n–π electron hybrid structures with varying separation of aromatic rings. ACS Applied Polymer Materials, 7(18), 12337–12344.


Zhu, D., Chen, X., Wang, J., & Li, Q. (2025). A new strategy enabling combined fluorescence imaging of individual tuberculous granulomas and precise photothermal therapy of tuberculosis with lesion- and pathogen-targeting capabilities of the nanoparticles. Note, Open Access.


Wang, Z., Wang, W., Wu, Q., & Zhu, D. (2025). Constructing 1 + 1 > 2 photosensitizers based on NIR cyanine–iridium(III) complexes for enhanced photodynamic cancer therapy. Molecules, 30(12), 2662.


Sun, Y., Tang, Y., Zhang, L., Zhao, H., Wang, Z., & Zhu, D. (2025). Self-assembly versus coassembly: An amphiphilic NIR-II aggregation-induced emission luminogen for phototheranostics of orthotopic glioblastoma. Journal of Medicinal Chemistry.


Wang, Z., Liu, Y., Zhao, L., Tang, Y., & Zhu, D. (2025). Endogenous near-infrared chemiluminescence: Imaging-guided non-invasive thrombolysis and anti-inflammation based on a heteronuclear transition metal complex. Advanced Science, 12(5), 14567.


Wang, Z., Li, C., Zhao, H., Tang, Y., & Zhu, D. (2025). Leveraging tumor microenvironment to boost synergistic photodynamic therapy, ferroptosis anti-tumor efficiency based on a functional iridium(III) complex. Advanced Science, 12(7), 14892.


Tang, Y., Wang, Z., Zhao, H., Sun, Y., & Zhu, D. (2025). Sonodynamic and bioorthogonal sonocatalytic thrombotic therapy based on AIE cationic tetranuclear Ir(III) complex nanoplatform guided by NIR-chemiluminescence imaging. Advanced Materials, 37(4), 2310674.


Zhu, D., Wang, Z., & Tang, Y. (2025). The Midas touch by internal stimuli: Activatable luminogens with near-infrared aggregation-induced emission for potent bioimaging and theranostics. Review Article.


Wang, Z., Li, X., Zhao, H., Tang, Y., & Zhu, D. (2024). Disulfide-bridged cationic dinuclear Ir(III) complex with aggregation-induced emission and glutathione-consumption properties for elevating photodynamic therapy. Inorganic Chemistry, 63(22), 18945–18956.


Wang, Z., Tang, Y., Zhao, H., & Zhu, D. (2024). Phosphorescent sensor based on iridium(III) complex with aggregation-induced emission activity for facile detection of volatile acids. Molecules, 29(9), 2031.

Christian Messina | Neuromuscular Diseases | Best Researcher Award

Dr. Christian Messina | Neuromuscular Diseases | Best Researcher Award

Dr. Christian Messina, Azienda Sanitaria Provinciale Caltanissetta, Italy.

Dr. Christian Messina is an accomplished Italian neurologist with a strong academic foundation and a growing impact in the fields of neuromuscular diseases, demyelinating disorders, and dementia. He holds multiple advanced degrees and certifications in neurology and neurophysiology and is currently pursuing further specialization. Practicing across Sicily, he brings clinical expertise to both urban and regional settings. His research contributions, notably the identification of a novel hATTR variant and the use of eculizumab in myasthenic crisis, underscore his innovative approach to complex neurological conditions. With 12 high-impact publications and memberships in major neurological societies, Dr. Messina is a rising voice in Italian and international neuroscience.

Profile

orcid

Early Academic Pursuits

Dr. Christian Messina’s journey into the realm of neuroscience began with distinction at the University of Catania, where he completed his specialization in Neurology with honors. From the outset, his academic excellence set the tone for a career marked by precision, curiosity, and deep commitment to the neurological sciences. Driven by a passion for continuous learning, he later earned a Master’s degree in Adult and Geriatric Neuropsychology from the University of Chieti, and he is currently advancing his expertise through a second Master’s in Neurophysiology at the University of Milan.

Professional Endeavors in Neurology

Currently serving as a Dirigente Medico di I Livello at the Azienda Sanitaria Provinciale in Caltanissetta, Italy, Dr. Messina actively practices across multiple Sicilian provinces including Catania, Messina, Enna, and Siracusa. He undertook a six-month fellowship in neuromuscular disorders at the esteemed Neuromuscular Disease Center, University of Palermo, which sharpened his clinical acumen in diagnosing and managing complex neurological disorders. His work is deeply integrated into regional neurological care and remains pivotal in advancing both adult and pediatric neurophysiological diagnostics.

Contributions and Research Focus

Dr. Messina’s research is primarily focused on neuromuscular diseases, demyelinating CNS disorders such as multiple sclerosis, and dementia-related conditions. He has made significant contributions by identifying and clinically characterizing a novel hereditary transthyretin amyloidosis (hATTR) variant, and has proposed innovative therapies such as eculizumab in myasthenic crises. His work has also enhanced understanding of seronegative myasthenia gravis, adding valuable insight to the field. In his clinical publications, he often sheds light on rare genotypic and phenotypic presentations, offering clarity in diagnostic and therapeutic approaches.

Accolades and Recognition

With 12 peer-reviewed publications in high-impact SCI and Scopus-indexed journals, Dr. Messina has built a respected profile in academic neurology. His citation index—H-index 3 on Google Scholar, and 2 on Scopus and Web of Science—reflects the growing relevance of his scholarly contributions. He is also an active member of Italy’s foremost neurological societies including SIN, SINC, and LICE, through which he remains engaged in cutting-edge developments and collaborative scientific exchange.

Impact and Influence

Through his research on biological therapies in myasthenia gravis and the development of normative neurophysiological values for peripheral sensory nerve conduction, Dr. Messina has begun to influence how age-specific neurodiagnostic standards are developed globally. His clinical insights and research have the potential to improve diagnostic accuracy and treatment responses for patients across varying age groups. Furthermore, his documented work on rare variants not only expands medical literature but also enables precision medicine in neurology.

Innovation and Vision

Dr. Messina embodies a spirit of clinical innovation, demonstrated by his proactive application of novel therapeutics and diagnostic strategies. His current research continues to explore predictive markers for treatment response, bridging the gap between laboratory science and patient care. His vision is rooted in translating neurophysiological evidence into accessible, everyday clinical protocols that can be adopted widely in both primary and tertiary care settings.

Legacy and Future Contributions

Poised to become a thought leader in clinical neuroscience, Dr. Christian Messina’s dedication to rigorous research and compassionate practice is setting the foundation for a career of enduring impact. As he progresses toward completing his second master’s and expands his portfolio of publications, his work promises to shape the future of neurodiagnostics and neuromuscular care. His commitment to both the academic and clinical communities ensures that his contributions will continue to benefit patients, professionals, and scholars for years to come.

Publication

1. Double seronegative myasthenia gravis and mimics: a retrospective cross-sectional study by two tertiary centers in the Southern Italy
Authors: Maccora S., Vinciguerra C., Messina C., Bevilacqua L., Rini N., Barone P., Brighina F., Di Stefano V.
Year: 2025

2. Woodhouse-Sakati syndrome: A review
Author: Messina C.
Year: 2025

3. Prominent and fast response to eculizumab in myasthenic crisis: the potential as rescue therapy in refractory myasthenia gravis
Authors: Messina C., Basile L., Crescimanno G., Battaglia S., Scichilone N., Brighina F., Di Stefano V.
Year: 2025

4. Stroke Warning Syndrome as the Initial Manifestation of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy
Author: Messina C.
Year: 2025

5. Expanding the Genetic and Phenotypic Spectrum of Kearns-Sayre Syndrome: A Case Report
Author: Messina C.
Year: 2025

6. Woman with Breast Cancer Presenting with Opsoclonus–Myoclonus Syndrome: A Case Report and Literature Review
Authors: Cipolla C., Gebbia V., Di Stefano V., Messina C., Sambataro D., Brighina F., Mesi C., Greco M., Cortegiani A., Valerio M.R.
Year: 2025

7. Genetic Screening for Hereditary Transthyretin Amyloidosis in the Population of Cammarata and San Giovanni Gemini Through Red Flags and Registry Archives
Authors: Di Stefano V., Messina C., Pignolo A., Pecoraro F., Cutrò I., Alonge P., Rini N., Quartetti U., Lo Bue V., Borgione E., et al.
Year: 2025

8. A New Form of Combined Hyperactive Dysfunction Syndrome: A Unique Case
Author: Messina C.
Year: 2025

9. Expanding the Genetic and Clinical Spectrum of Hereditary Transthyretin Amyloidosis: The Glu61Ala Variant
Authors: Messina C., Gulizia S., Scalia F., Borgione E., Cappello F., Brighina F., Di Stefano V.
Year: 2025

10. Is It Time for Ocrelizumab Extended Interval Dosing in Relapsing Remitting MS? Evidence from An Italian Multicenter Experience During the COVID-19 Pandemic
Authors: Zanghì A., Avolio C., Signoriello E., Abbadessa G., Cellerino M., Ferraro D., Messina C., Barone S., Callari G., Tsantes E., et al.
Year: 2022

Conclusion

Dr. Messina represents a dynamic blend of clinical excellence and research innovation. His work has already made meaningful contributions to the understanding of rare neuromuscular conditions and therapeutic strategies. As he continues to pursue advanced training and lead impactful research, his influence in the field is expected to grow. He is a strong candidate for prestigious recognitions such as the Best Researcher Award or Excellence in Innovation Award, with the promise of making sustained contributions to neuroscience, clinical neurophysiology, and patient-centered neurological care in the years ahead.

Nikolaos Marinakis | Neurogenetics | Best Researcher Award

Dr. Nikolaos Marinakis | Neurogenetics | Best Researcher Award

Dr. Nikolaos Marinakis,  Laboratory of Medical Genetics, NKUA, Greece.

Dr. Nikolaos M. Marinakis is a highly accomplished Molecular Biologist and Geneticist whose career has been devoted to the diagnosis and molecular analysis of rare genetic disorders. With over a decade of laboratory experience and a strong academic background, he has steadily advanced from early bench research in molecular biology to become a Clinical Laboratory Geneticist and genome analyst. His expertise spans whole exome and whole genome sequencing, variant interpretation, CNV and RNA sequencing analysis, and the clinical application of Next Generation Sequencing. Notably, he has contributed to over 1500 molecular diagnoses in patients with rare diseases and has gained international recognition through the ESHG observership at Radboud University Medical Center. Dr. Marinakis exemplifies scientific excellence, clinical impact, and collaborative innovation in human genetics.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Dr. Nikolaos M. Marinakis embarked on his academic journey with a strong passion for understanding human biology at a molecular level. He earned his Bachelor’s degree in Molecular Biology and Genetics from the Democritus University of Thrace (DUTH), where he was actively involved in bench research. His undergraduate thesis focused on the functional characterization of NAT1 polymorphisms in the primate Macaca mulatta, offering an early glimpse into his interest in gene function and enzyme activity. This formative research cultivated his technical proficiency in cloning, site-directed mutagenesis, protein purification, and enzymatic assays—skills that would later become instrumental in his advanced academic and clinical endeavors.

🧬 Professional Endeavors in Genetics

Dr. Marinakis has spent more than a decade immersed in both research and clinical laboratories, gaining broad and deep expertise in molecular diagnostics. His professional foundation was laid at the Laboratory of Medical Genetics at St. Sophia’s Children Hospital, affiliated with the National and Kapodistrian University of Athens (NKUA). Here, he progressed from an MSc student to a PhD candidate and eventually to a Scientific Research Associate. His doctoral research was centered on the use of Next Generation Sequencing (NGS) technologies for diagnosing rare genetic disorders, and his project involved bioinformatic evaluation and functional validation of genomic variants. As a current genome analyst, he supervises Clinical Whole Exome Sequencing, routinely interpreting variants in over 1,500 complex diagnostic cases encompassing neurodevelopmental, nephrological, cardiovascular, and ophthalmological diseases.

🔍 Research Contributions and Focus

Dr. Marinakis’s primary research lies at the intersection of clinical genomics and bioinformatics. His scientific focus is on the molecular investigation of rare monogenic disorders, variant classification, and the integration of novel genomic technologies such as long-read sequencing into diagnostic pipelines. He has also contributed to the development and clinical implementation of molecular assays for both postnatal and prenatal diagnostics. His research continues to unravel the genetic underpinnings of syndromes with previously unknown etiologies, enriching the understanding of human genomic complexity. Through RNA sequencing and CNV analysis, he bridges the gap between genotype and phenotype in a clinical context.

🏅 Accolades and Recognition

In recognition of his significant contributions to human genetics, Dr. Marinakis was awarded a competitive observership by the European Society of Human Genetics (ESHG). This prestigious award enabled him to join the Genome Diagnostics unit at the Radboud University Medical Center in the Netherlands under the mentorship of Professor Christian Gilissen. There, he expanded his expertise in whole genome sequencing, variant annotation, structural variation, and advanced bioinformatic pipelines. His growing recognition as a Clinical Laboratory Geneticist (ErCLG-certified) further underscores his professional standing in Europe’s genetics community.

🧠 Impact on Clinical Genomics

Dr. Marinakis has made a measurable impact on translational medicine by bringing genomic science to the bedside. Through his analysis and interpretation of complex NGS datasets, he has helped diagnose hundreds of patients with elusive genetic conditions, directly improving clinical outcomes and enabling personalized treatment strategies. His ability to convert raw genomic data into meaningful clinical insights has made him a key figure in the field of diagnostic genetics in Greece and beyond. His meticulous approach to variant interpretation, especially in challenging or ambiguous cases, continues to guide clinicians in the decision-making process.

🌍 Influence and Collaboration

A committed collaborator and lifelong learner, Dr. Marinakis maintains strong academic and clinical ties with global institutions. His experiences at NKUA and Radboud UMC have equipped him with a broad international outlook on genomics and rare disease research. He actively contributes to cross-border initiatives and research consortiums focused on data sharing, standardization of bioinformatics pipelines, and discovery of novel disease mechanisms. His LinkedIn presence and professional engagement reflect his dedication to connecting with the wider genetics and biomedical community.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Marinakis is poised to lead initiatives that integrate AI-driven genomic interpretation and third-generation sequencing into clinical practice. He aspires to contribute to national and European genomics strategies aimed at early diagnosis, carrier screening, and reproductive planning. By mentoring younger scientists and continuing to publish translational research, he is building a legacy rooted in both scientific rigor and compassionate care. With his strong foundation and forward-thinking vision, Dr. Marinakis represents a dynamic force in the future of precision medicine and rare disease diagnostics.

Publication

  • Title: Phenotype‐driven variant filtration strategy in exome sequencing toward a high diagnostic yield and identification of 85 novel variants in 400 patients with rare Mendelian disorders
    Authors: NM Marinakis, M Svingou, D Veltra, K Kekou, C Sofocleous, FN Tilemis, …
    Year: 2021

 

  • Title: Germline CNV detection through whole-exome sequencing (WES) data analysis enhances resolution of rare genetic diseases
    Authors: FN Tilemis, NM Marinakis, D Veltra, M Svingou, K Kekou, A Mitrakos, …
    Year: 2023

 

  • Title: Case report: a novel synonymous ARPC1B gene mutation causes a syndrome of combined immunodeficiency, asthma, and allergy with significant intrafamilial clinical heterogeneity
    Authors: I Papadatou, N Marinakis, E Botsa, M Tzanoudaki, M Kanariou, I Orfanou, …
    Year: 2021

 

  • Title: The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders
    Authors: A Saffari, T Lau, H Tajsharghi, EG Karimiani, A Kariminejad, S Efthymiou, …
    Year: 2023

 

  • Title: Expanded phenotypic spectrum of neurodevelopmental and neurodegenerative disorder Bryant-Li-Bhoj syndrome with 38 additional individuals
    Authors: DE Layo-Carris, EE Lubin, AK Sangree, KJ Clark, EL Durham, …
    Year: 2024

 

  • Title: De novo variants in RNF213 are associated with a clinical spectrum ranging from Leigh syndrome to early-onset stroke
    Authors: T Brunet, B Zott, V Lieftüchter, D Lenz, A Schmidt, P Peters, R Kopajtich, …
    Year: 2024

 

  • Title: SDH-deficient renal cell carcinoma: A case report associated with a novel germline mutation
    Authors: V Milionis, D Goutas, D Vlachodimitropoulos, AC Lazaris, I Kyriazis, …
    Year: 2021

 

  • Title: Towards a standard benchmark for variant and gene prioritisation algorithms: PhEval-Phenotypic inference Evaluation framework
    Authors: Y Bridges, V de Souza, KG Cortes, M Haendel, NL Harris, DR Korn, …
    Year: 2024

 

  • Title: Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome
    Authors: V Salpietro, R Maroofian, MS Zaki, J Wangen, A Ciolfi, S Barresi, …
    Year: 2024

 

  • Title: Combined exome analysis and exome depth assessment achieve a high diagnostic yield in an epilepsy case series, revealing significant genomic heterogeneity and novel mechanisms
    Authors: D Veltra, FN Tilemis, NM Marinakis, M Svingou, A Mitrakos, K Kosma, …
    Year: 2023

 

✅ Conclusion

Dr. Nikolaos M. Marinakis stands out as a distinguished researcher in the field of medical genetics and genomics. His work bridges cutting-edge molecular research with clinical diagnostics, making a direct impact on patient care and the understanding of rare diseases. His technical expertise, international collaborations, and growing leadership in genomic diagnostics reflect both his current achievements and his potential for future contributions to precision medicine. He is a strong candidate for recognition in any academic or professional forum honoring excellence in translational genomics and biomedical research.

Izabela Małysz-Cymborska | Neurogenetics | Best Researcher Award

Assoc. Prof. Dr. Izabela Małysz-Cymborska | Neurogenetics | Best Researcher Award

Assoc. Prof. Dr. Izabela Małysz-Cymborska,  Department of Neurology and Neurosurgery, School of Medicine, University of Warmia and Mazury, Poland.

Dr. Izabela Małysz-Cymborska is a distinguished biomedical researcher and Associate Professor in Neurosurgery at the University of Warmia and Mazury, Poland. Her academic path began with a Master’s in Biology and culminated in a Ph.D. focused on hormonal mechanisms, followed by a Habilitation in Medicine. Her research spans neuroregeneration, stem cell therapy, and immunomodulatory strategies for neurological diseases such as ALS and stroke. She has led and contributed to nationally funded projects like NanoTech4ALS, Explore Me, and her current OPUS-funded investigation using a swine model for stroke therapy. Her interdisciplinary approach bridges molecular biology, reproductive science, and clinical neuroscience, demonstrating a rare ability to translate foundational research into therapeutic innovation.

Profile

Google Scholar

🎓 Early Academic Pursuits

Dr. Izabela Małysz-Cymborska embarked on her academic journey with a deep-rooted interest in biological sciences. Born on September 21, 1985, in Poland, she pursued her undergraduate studies at the University of Warmia and Mazury in Olsztyn, earning a Master of Science degree in Biology in 2009. Her passion for advanced biomedical research led her to the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, where she completed her Ph.D. in 2015. Her doctoral research, grounded in hormonal action mechanisms, laid the foundation for her future contributions to neurobiology and regenerative medicine.

🧠 Professional Endeavors in Neuroscience

Dr. Małysz-Cymborska’s postdoctoral and professional journey has been largely rooted in neuroscientific investigation, with a special focus on neuroregeneration and stroke therapy. Since 2021, she has held the position of Associate Professor in the Department of Neurosurgery at the University of Warmia and Mazury. Her early postdoctoral fellowships (2015–2018) focused on pioneering work in the application of glial progenitors and stem cells in neurological disorders like ALS. These formative experiences not only enriched her research trajectory but also provided a vital bridge between animal studies and translational medicine.

🧪 Research Focus and Scientific Contributions

Dr. Małysz-Cymborska’s research portfolio reflects a consistent dedication to understanding complex neural pathologies and their treatment through regenerative approaches. She has led and contributed to several national and international projects, including NanoTech4ALS, which investigated MRI-monitored transplantation techniques using hydrogel carriers for ALS treatment. Her current role as Principal Investigator in the OPUS-funded project explores an endovascular model of stroke in swine, opening new therapeutic pathways for immunomodulation. She has also delved into reproductive biology, investigating the influence of gonadotropins on prostaglandin synthesis and the function of the corpus luteum, showcasing her multidisciplinary expertise.

🧬 Bridging Regeneration and Technology

A major hallmark of Dr. Małysz-Cymborska’s work is the integration of regenerative medicine and cutting-edge biomedical technologies. Her involvement in Explore Me and NanoTech4ALS demonstrated her commitment to merging cellular therapy with advanced biomaterials and imaging. These projects explored the therapeutic potential of mesenchymal stem cells and human glial progenitors for neurodegenerative conditions, reflecting her drive to push boundaries in translational medicine and neurosurgery.

🏅 Accolades and Recognition

Dr. Małysz-Cymborska’s scientific accomplishments were recognized through her Habilitation Degree in Medicine, awarded in 2022 by the University of Warmia and Mazury—a prestigious academic achievement in Poland that underscores her contributions to the medical sciences. Additionally, her appointment as the Dean’s representative for animal experiments between 2018 and 2019 further illustrates the trust and respect she commands within her institution and the research community.

🌍 Impact and Influence in Translational Neuroscience

Her work has had significant implications not only in Poland but also across the global neuroscience landscape. By focusing on models that simulate real-world human neurological disorders, such as swine models for stroke and ALS, she has established platforms that can more accurately predict treatment outcomes in humans. Her collaborative efforts within national strategic medical programs have enriched the broader field of translational neuroscience, particularly in immune response modulation and neural repair mechanisms.

🔮 Legacy and Future Contributions

As her OPUS project continues until 2025, Dr. Izabela Małysz-Cymborska is poised to deliver crucial insights into stroke immunotherapy. Her legacy lies in her ability to traverse boundaries between endocrinology, neurobiology, and regenerative therapy—crafting a unique niche that advances both fundamental science and clinical application. With a promising trajectory ahead, she is set to influence future protocols in neurovascular therapy, offering hope to patients with currently untreatable conditions.

Publication

  • Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies
    Authors: JM Oliveira, L Carvalho, J Silva-Correia, S Vieira, M Majchrzak, …
    Year: 2018

 

  • Advances in bioinks and in vivo imaging of biomaterials for CNS applications
    Authors: EP Oliveira, I Malysz-Cymborska, D Golubczyk, L Kalkowski, …
    Year: 2019

 

  • The role of glia in canine degenerative myelopathy: relevance to human amyotrophic lateral sclerosis
    Authors: D Golubczyk, I Malysz-Cymborska, L Kalkowski, M Janowski, JR Coates, …
    Year: 2019

 

  • Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions
    Authors: S Vieira, P Strymecka, L Stanaszek, J Silva-Correia, K Drela, …
    Year: 2020

 

  • MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals
    Authors: I Malysz-Cymborska, D Golubczyk, L Kalkowski, A Burczyk, M Janowski, …
    Year: 2018

 

  • Endovascular model of ischemic stroke in swine guided by real-time MRI
    Authors: D Golubczyk, L Kalkowski, J Kwiatkowska, M Zawadzki, P Holak, J Glodek, …
    Year: 2020

 

  • Expression of the vascular endothelial growth factor receptor system in porcine oviducts after induction of ovulation and superovulation
    Authors: I Małysz-Cymborska, A Andronowska
    Year: 2014

 

  • Rabbit model of human gliomas: implications for intra-arterial drug delivery
    Authors: H Qin, M Janowski, MS Pearl, I Malysz-Cymborska, S Li, CG Eberhart, …
    Year: 2017

 

  • Two in one: use of divalent manganese ions as both cross-linking and MRI contrast agent for intrathecal injection of hydrogel-embedded stem cells
    Authors: L Kalkowski, D Golubczyk, J Kwiatkowska, P Holak, K Milewska, …
    Year: 2021

 

  • Effect of hCG and eCG treatments on Prostaglandins Synthesis in the Porcine Oviduct
    Authors: I Małysz‐Cymborska, AJ Ziecik, A Waclawik, A Andronowska
    Year: 2013

 

🧾 Conclusion

Dr. Małysz-Cymborska’s career reflects a compelling fusion of scientific curiosity, clinical relevance, and academic rigor. With notable achievements in regenerative medicine and translational neuroscience, she continues to shape the future of therapeutic interventions for complex neurological disorders. Her ongoing research promises to pave the way for advanced stroke treatments and immune-based neurotherapies, cementing her role as a key contributor to modern biomedical science.

Elissavet Kollia | Developmental Neuroscience |Best Researcher Award

Ms. Elissavet Kollia | Developmental Neuroscience |Best Researcher Award 

Ms. Elissavet Kollia, National Kapodistrian University of Athens, Greece.

Ms. Elissavet Kollia is a distinguished pediatrician and researcher specializing in pediatric neurology. With an exceptional academic background, she graduated from the Medical School of the Democritus University of Thrace and pursued advanced postgraduate studies in Clinical Pediatrics and Nursing-Research. Her extensive clinical training, from pediatrics specialization to her current role at Konstantopouleio General Hospital “Agia Olga,” has solidified her expertise in child healthcare. Additionally, her research focuses on movement disorders in pediatric patients with early-onset developmental and epileptic encephalopathy, contributing valuable insights to the field. Her dedication extends beyond clinical practice, as seen in her voluntary medical work and commitment to mentoring young professionals.

Profile

Google Scholar

🎓 Early Academic Pursuits

From an early age, Elissavet Kollia demonstrated exceptional academic abilities, graduating from the 4th General Lyceum of Agia Paraskevi with an outstanding general grade of “excellent 19.2.” Her passion for medicine led her to the Medical School of the Democritus University of Thrace, where she was admitted in September 2007. With dedication and perseverance, she successfully earned her medical degree in July 2013, achieving a commendable grade of “very good 8.33.” Shortly after, she obtained her license to practice as a doctor in Greece and later in Munich, Germany, reflecting her international medical competence.

🏥 Professional Endeavors

Ms. Kollia’s professional journey has been marked by extensive clinical training and hands-on experience in pediatrics. She began her specialization at the Pediatric Clinic of the General Hospital of Karpenisi from June 2014 to October 2016. Her commitment to healthcare extended beyond hospitals as she served as a rural doctor at the Primary Health Care Center of Agios Nikolaos, Evrytania, actively participating in emergency care at the General Hospital of Karpenisi. Her expertise deepened when she became a scientific associate at the Pediatric Neurology Unit of the First Pediatric Clinic of the National University of Athens. She then pursued her residency in pediatrics at the First University Pediatric Clinic – Children’s Hospital “Agia Sophia” from November 2018 to May 2022, ultimately obtaining her specialty title in June 2022. Currently, she is serving as a pediatrician at the Konstantopouleio General Hospital “Agia Olga,” continuing her mission to provide excellent pediatric care.

📝 Contributions and Research Focus

Ms. Kollia’s dedication to medical research has significantly contributed to the field of pediatric neurology. Her postgraduate studies in “Clinical Pediatrics and Nursing-Research,” completed with an exceptional grade of “Excellent 9.31,” strengthened her academic foundation. Her ongoing doctoral dissertation at the National Kapodistrian University of Athens focuses on movement disorders in pediatric patients with early-onset developmental and epileptic encephalopathy, a field crucial for advancing neurological care in children. Her research efforts have led to an upcoming publication in the European Journal of Paediatric Neurology, further establishing her as a valuable contributor to the scientific community.

🌟 Accolades and Recognition

Ms. Kollia’s unwavering commitment to medicine has been recognized through her outstanding academic achievements and professional milestones. From excelling in her graduate and postgraduate studies to securing prestigious residency and specialization opportunities, she has consistently demonstrated excellence in her field. Her acceptance into renowned institutions and her involvement in vital research projects underline her credibility and expertise in pediatric neurology.

💪 Impact and Influence

Beyond her clinical and academic contributions, Dr. Kollia has actively participated in voluntary medical programs, extending her expertise to underserved populations. She contributed to emergency case observations at the Children’s Hospital “Agia Sophia” and participated in medical landing programs in remote islands, showcasing her dedication to public health. Her influence extends to mentoring young medical professionals, sharing her knowledge, and contributing to the medical community’s growth.

💡 Legacy and Future Contributions

With a passion for advancing pediatric neurology, Dr. Kollia continues to shape the future of medical research and patient care. Her work in understanding movement disorders in children with epileptic encephalopathy holds the potential to improve diagnostic and therapeutic approaches in pediatric neurology. As she progresses in her career, her contributions to both clinical practice and scientific research will undoubtedly leave a lasting impact on the medical community and the lives of the children she treats.

 

Publication

  • Title: The genetic etiology in cerebral palsy mimics: the results from a Greek tertiary care center
    Authors: V Zouvelou, D Yubero, L Apostolakopoulou, E Kokkinou, M Bilanakis, …
    Year: 2019

 

  • Title: MOTOR PHENOTYPING IN A GREEK COHORT OF PATIENTS WITH NEONATAL AND INFANTILE ONSET DEVELOPMENTAL AND EPILEPTIC ENCEPHALOPATHY
    Authors: E Kollia, E Kokkinou, C Outsika, G Koltsida, V Zouvelou, A Vontzalidis, …
    Year: 2025

 

🌟 Conclusion

Ms. Kollia’s journey exemplifies the perfect blend of academic excellence, professional expertise, and compassionate patient care. Through her research and clinical endeavors, she continues to advance the understanding and treatment of pediatric neurological disorders. Her unwavering dedication to improving children’s health positions her as a leading figure in pediatric medicine. With her vision for excellence and continued contributions, she is set to leave a lasting impact on the medical field, inspiring future generations of healthcare professionals.