Nasar Ata | Neurology | Best Researcher Award

Mr. Nasar Ata | Neurology | Best Researcher Award

Dr. S. M. Nasar Ata is a researcher in the Department of Neurology at Henry Ford Hospital, Detroit, USA, specializing in artificial intelligence applications in neuroscience. His work focuses on developing machine learning and soft computing–based algorithms such as CNN, ANN, SVM, and MLR for detecting and predicting brain-based disorders, including Multiple Sclerosis. He integrates metabolomics and imaging clinical data to identify biomarkers and construct predictive models for neurological and metabolic diseases. Dr. Ata collaborates with research centers such as JNMC and IBRC AMU on brain tumor prediction from MRI data and with RCDR AMU on diabetes-related model development. His research contributions include several submitted papers on metabolite prediction, deep learning in brain tumor detection, and molecular mechanisms underlying neurodegeneration and cancer. He has also authored the textbook Basics of Bio-Sciences and actively participates in scientific discussions and editorial work. With 3 published documents, 7 citations, and an h-index of 2, Dr. Ata’s growing research profile reflects his commitment to advancing data-driven neurological diagnostics through AI and biostatistical innovation.

Profiles: Scopus | Research Gate

Featured Publication

Corrigendum to “Artificial neural network-based prediction of multiple sclerosis using blood-based metabolomics data” [Multiple Sclerosis and Related Disorders, 92, 105942 (2024)]. (2024). Multiple Sclerosis and Related Disorders, 95, 106321.

Meng Wang | Neuroanatomy | Best Researcher Award

Mr. Meng Wang | Neuroanatomy | Best Researcher Award

Mr. Meng Wang | Chongqing Medical University | China

Meng Wang is an Associate Professor at Chongqing Medical University, where he leads an innovative research program focused on unraveling the neural encoding mechanisms underlying sensory memory traces. His work employs multiscale approaches that integrate neural networks, cellular ensembles, and synaptic plasticity to advance the systematic mapping of cortical memory processes through microscale functional connectivity maps. Dr. Wang has made landmark contributions to neuroscience, including the identification of Holistic Bursting (HB) cells as putative auditory memory engram neurons characterized by superlinear integration properties, providing novel insights into how sensory memories are encoded and maintained in the brain. His research program bridges cellular neurobiology with systems neuroscience, offering a comprehensive framework for understanding memory formation at multiple organizational levels. A committed scholar, Dr. Wang has authored 15 scientific documents that have collectively received 156 citations from 149 publications, reflecting the impact and visibility of his work within the global scientific community. His h-index of 7 demonstrates a growing influence in the field, underscoring both the relevance and originality of his research. Through his pioneering efforts, Dr. Wang continues to contribute significantly to advancing the understanding of cortical mechanisms that shape memory processing and sensory cognition.

Profiles: Scopus | Research Gate

Featured Publications

Author(s). (2025). 6-Gingerol, an active compound of ginger, attenuates NASH-HCC progression by reprogramming tumor-associated macrophage via the NOX2/Src/MAPK signaling pathway. BMC Complementary Medicine and Therapies.

Zia-ur-Rehman | Neuroimaging | Best Researcher Award

Mr. Zia-ur-Rehman | Neuroimaging | Best Researcher Award

Mr. Zia-ur-Rehman | University of Sultan Zainal Abidin | Pakistan

Dr. Zia-ur-Rehman is a dedicated Computer Science researcher and Ph.D. scholar at Universiti Sultan Zainal Abidin (UniSZA), Malaysia, specializing in deep learning, image processing, and computer vision, with a focus on Alzheimer’s disease diagnosis through advanced neuroimaging techniques. He has contributed significantly to the field with publications in high-impact journals such as Ain Shams Engineering Journal, Health Science Reports, and PLoS ONE, with a total of 8 published articles and 5 more under review in reputed international journals. His research outputs are well-recognized in the global academic community, reflected by his Scopus profile showing an h-index of 3, with 105 citations across 12 documents. Beyond publishing, Dr. Zia-ur-Rehman serves as a reviewer for indexed journals including Biomedical Signal Processing and Control and the International Computing and Digital Systems Journal, and as a Technical Program Committee member in international IEEE conferences in Lebanon, UAE, and Bahrain. He has also earned multiple international certifications in machine learning, research methods, and data science from leading institutions including Johns Hopkins University, Duke University, University of London, University of Amsterdam, and IBM. With a blend of teaching, research, and global academic collaborations, he continues to advance innovative solutions in artificial intelligence for healthcare applications.

Profiles: Orcid | Research Gate

Featured Publications

  • Rehman, Z.-u., Awang, M. K., Ali, G., Hamza, M., Ali, T., Ayaz, M., & Hijji, M. (2025). 3D-MobiBrainNet: Multi-class Alzheimer’s disease classification using 3D brain magnetic resonance imaging. Ain Shams Engineering Journal.

  • Rehman, Z.-u., Awang, M. K., Ali, G., & Faheem, M. (2025). Recent advancements in neuroimaging-based Alzheimer’s disease prediction using deep learning approaches in e-health: A systematic review. Health Science Reports, 8(5).

  • Rehman, Z.-u., Awang, M. K., Ali, G., & Faheem, M. (2024). Deep learning techniques for Alzheimer’s disease detection in 3D imaging: A systematic review. Health Science Reports, 7(9).

  • Rehman, Z.-u., Awang, M. K., Rashid, J., Ali, G., Hamid, M., Mahmoud, S. F., Saleh, D. I., & Ahmad, H. I. (2024). Classification of Alzheimer disease using DenseNet-201 based on deep transfer learning technique. PLOS ONE, 19(9).

  • Rehman Bathla, Z.-u. (2017). Formal specification and verification of web semantic design methodology (WSDM). International Review of Basic and Applied Sciences.

  • Rehman Bathla, Z.-u. (2017). Object oriented paradigm vs. agent oriented paradigm. International Review of Basic and Applied Sciences.

  • Rehman Bathla, Z.-u. (2017, August). Audio watermarking by hybridization of DWT-DCT. International Journal of Computer Science and Network Security (IJCSNS).

  • Rehman Bathla, Z.-u. (2015). Consumers’ trust on multinational brand (A quantitative research on Microsoft products in Sahiwal, Pakistan). Global Journal of Research in Business & Management.

Becky Riggs | Neuroimaging | Best Researcher Award

Dr. Becky Riggs | Neuroimaging | Best Researcher Award

Dr. Becky Riggs |  OHSU Doernbecher Children’s Hospital | United States

Dr. Rebecca J. Riggs is an accomplished physician–scientist and academic leader in pediatric critical care and neurocritical care. With advanced training in pediatrics, critical care, and neurocritical care at top U.S. institutions, she has built a career that blends clinical excellence, research innovation, and educational leadership. Her research centers on ultrasound medicine, neuro-monitoring, viral pathogens affecting the nervous system, and neurodevelopmental outcomes of critically ill children. She has served as principal investigator in national multi-center studies funded by the NIH and CDC, contributing to evidence-based guidelines for conditions such as acute flaccid myelitis and pediatric COVID-19. Alongside her research, she has directed neurocritical care programs, led safety and quality initiatives, and mentored future physicians. Her work demonstrates a rare combination of technical expertise, collaborative leadership, and a commitment to advancing both patient care and the broader field of pediatric intensive care medicine.

Profile

Scopus

Early Academic Pursuits

Rebecca J. Riggs, widely known as Becky, laid the foundation for her medical career through an early commitment to both emergency medicine and the social sciences. With training as an emergency medical technician and paramedic, followed by a degree in women’s studies, she cultivated a broad perspective that combined scientific rigor with a deep awareness of social contexts. This unique academic blend informed her later clinical approach, emphasizing both medical expertise and patient-centered care. She advanced her education by completing her medical degree at the University of Tennessee College of Medicine, and subsequently pursued specialized training in pediatrics, pediatric critical care, and pediatric neurocritical care at leading institutions across the United States.

Professional Endeavors

Dr. Riggs’ professional path reflects her dedication to pediatric intensive care and academic medicine. She held early faculty roles at Johns Hopkins University School of Medicine, where she became a key figure in pediatric anesthesiology and critical care medicine. Her work extended beyond bedside care into administrative leadership, including directing pediatric neurocritical care services and serving on multiple institutional committees aimed at advancing patient safety, quality improvement, and team culture within the intensive care environment. Later, her transition to Oregon Health & Science University marked a continuation of her leadership in pediatric critical care, where she now serves as an associate professor and directs programs that integrate neurology, cardiology, and intensive care.

Contributions to Neurocritical Care

Central to Dr. Riggs’ career has been her pioneering contributions to the development and expansion of pediatric neurocritical care. She co-directed and later directed programs that established protocols, pathways, and education models for the care of critically ill children with neurological conditions. Her leadership in culture change initiatives within the pediatric intensive care unit highlights her commitment to improving team dynamics and patient-centered outcomes. She has also served as a mentor and educator, leading simulations, workshops, and educational events to strengthen the capacity of clinicians in this demanding subspecialty.

Research Focus

Dr. Riggs’ scholarly contributions are strongly anchored in her research on ultrasound medicine and neuro-monitoring in critically ill children. Her investigations include ophthalmic ultrasonography, neurosonography, and contrast-enhanced ultrasonography, all aimed at enhancing diagnostic accuracy and monitoring in neonatal and pediatric intensive care settings. She has been particularly engaged in studying viral pathogens with neurological effects and in examining the neurodevelopmental outcomes of children after critical illness. Her role as site principal investigator for multi-center studies funded by the NIH and CDC underscores her central position in national efforts to improve understanding and care of acute flaccid myelitis and pediatric COVID-19 outcomes.

Leadership in Collaborative Studies

Dr. Riggs has played a vital role in large-scale, collaborative pediatric studies of national importance. She served as the Johns Hopkins site principal investigator for the NIH-funded Acute Flaccid Myelitis Natural History study, contributing to the creation of evidence-based guidelines for this rare but devastating condition. She also guided institutional involvement in the CDC-funded Overcoming COVID-19 study, which shaped the understanding of how children are affected by emerging viral illnesses. Through these collaborations, she has demonstrated an ability to bridge clinical expertise with research that informs global health policy and clinical standards.

Accolades and Recognition

Her research achievements have been supported by competitive federal funding, including NIH Loan Repayment Program awards for her pioneering work in pediatric ophthalmic ultrasound and imaging in cases of traumatic brain injury. These grants reflect recognition of both the novelty and impact of her research directions. Her leadership appointments at Johns Hopkins and Oregon Health & Science University further testify to her peers’ trust in her capacity to shape the future of pediatric critical care medicine.

Impact, Influence, and Future Contributions

The impact of Dr. Riggs’ work is evident in the improved protocols, expanded research pathways, and enhanced patient care strategies she has championed. By integrating ultrasound technology into pediatric neurocritical care, she has opened new avenues for bedside diagnostics and monitoring. Her influence extends through her leadership in guideline development, her mentorship of future physicians, and her advocacy for collaborative approaches to rare and emerging pediatric conditions. Looking ahead, her ongoing research and clinical leadership are poised to further shape the evolving field of pediatric neurocritical care, leaving a legacy of innovation, compassion, and transformative impact on children’s health worldwide.

Publications

1. Ophthalmic ultrasonography can identify retinal injury associated with abusive head trauma more quickly and accurately than other neuroimaging modalities — Authors: (not listed), 2025

2. A novel approach to thrombectomy and catheter directed tissue-type plasminogen activator in a toddler post-fontan — Authors: (not listed), 2024

Conclusion

Dr. Riggs’ career reflects a profound dedication to improving the lives of critically ill children through innovation in research, excellence in clinical care, and leadership in program development. Her contributions have significantly advanced pediatric neurocritical care by integrating novel diagnostic tools, shaping national guidelines, and fostering collaborative research networks. With her continued focus on emerging pathogens and neurodevelopmental outcomes, she is poised to further influence the future of pediatric intensive care on both national and international levels. Her legacy will be defined by her impact on patient outcomes, her mentorship of future leaders, and her role in shaping the evolving landscape of pediatric neurocritical care.

 

Jing Sui | Neuroimaging | Best Researcher Award

Prof. Jing Sui | Neuroimaging | Best Researcher Award 

Prof. Jing Sui | Beijing Normal University | China

Professor Jing Sui has established herself as a pioneering figure in computational psychiatry and cognitive neuroscience. With a strong foundation in optical engineering, image processing, and computer science, she built her career across leading institutions in the United States and China. Her research contributions lie at the forefront of multimodal fusion, brain imaging data mining, and the application of machine learning and deep learning to mental health studies. By developing innovative methods for biomarker identification, she has advanced diagnostic precision in psychiatry and neurological research. Recognized internationally through numerous awards, top citations, and global rankings, she has played a vital role in shaping both research and mentorship within the field.

Profile

Google Scholar

Early Academic Pursuits

From the beginning of her academic journey, Jing Sui demonstrated a strong aptitude for both engineering and computational sciences. She trained in optical technology and photoelectric instrumentation, while also developing parallel expertise in computer science. Her doctoral work in optical engineering, with a focus on image and signal processing, laid the foundation for her lifelong interest in extracting meaningful patterns from complex brain data. This multidisciplinary background positioned her uniquely at the intersection of neuroscience, engineering, and data science.

Professional Endeavors

Her professional career has spanned leading institutions in both China and the United States. She began as a postdoctoral fellow and later advanced to research scientist and assistant professor at a pioneering brain research network in the United States. Returning to China, she took on leadership roles at the Chinese Academy of Sciences, where she established herself as a principal investigator. Later, she became a professor at prominent national universities, where she continues to mentor and guide future generations of neuroscientists. These roles have enabled her to bridge international research collaborations and foster innovation in computational psychiatry.

Contributions to Cognitive Neuroscience

At the core of her scientific contributions lies the use of advanced data-driven methods to better understand the human brain. She has made notable advances in multimodal fusion techniques, combining diverse forms of neuroimaging data to capture a more holistic view of brain function. Her work integrates signal processing, independent component analysis, and deep learning to uncover hidden patterns that inform the study of mental disorders. By pushing the boundaries of machine learning and multivariate modeling, she has contributed significantly to the field of brain imaging data mining and its translation into clinical research.

Research Focus in Computational Psychiatry

Her research is strongly anchored in the identification of biomarkers for mental health conditions. By applying artificial intelligence to large-scale imaging datasets, she has advanced methods for detecting subtle brain alterations linked to psychiatric and neurological disorders. This approach has enhanced the precision of diagnostic tools and informed the development of computational psychiatry as a discipline. Her work illustrates how brain-inspired intelligence can merge with clinical practice to improve patient outcomes, offering pathways toward personalized mental health care.

Accolades and Recognition

Her groundbreaking contributions have been recognized nationally and internationally. She has received top-tier awards for natural sciences, science and technology innovation, and contributions to cancer-related brain imaging research. Prestigious foundations have supported her as a leading young scientist, while multiple academic societies have acknowledged her excellence through best paper awards, top-cited distinctions, and conference recognitions. She has also been consistently ranked among the world’s leading neuroscientists, reinforcing her reputation as a trailblazer in computational psychiatry and neuroimaging.

Impact and Influence

Her influence extends beyond her own discoveries to shaping the global research community. As a mentor and leader, she has cultivated young researchers who continue to expand the field of cognitive neuroscience. She has been instrumental in bringing together expertise from imaging, engineering, and psychiatry, creating an integrative approach that strengthens interdisciplinary collaboration. Her pioneering methods are widely adopted by neuroscientists worldwide, serving as a benchmark for brain imaging and machine learning studies.

Legacy and Future Contributions

The legacy of her work lies in redefining how brain imaging data can be harnessed to advance mental health research. By blending computational innovation with clinical relevance, she has carved a path that others continue to follow. Looking ahead, her contributions are likely to further transform computational psychiatry, particularly as advances in artificial intelligence deepen. Her future work will continue to shape the next generation of neuroscientific discovery, offering new insights into the biological basis of mental health and paving the way for more effective interventions.

Publications

Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls – MR Arbabshirani, S Plis, J Sui, VD Calhoun – 2017

Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness – VD Calhoun, J Sui – 2016

A review of multivariate methods for multimodal fusion of brain imaging data – J Sui, T Adali, Q Yu, J Chen, VD Calhoun – 2012

Machine learning in major depression: From classification to treatment outcome prediction – S Gao, VD Calhoun, J Sui – 2018

NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders – Y Du, Z Fu, J Sui, S Gao, Y Xing, D Lin, M Salman, A Abrol, MA Rahaman, … – 2020

Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises – J Sui, R Jiang, J Bustillo, V Calhoun – 2020

Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder – VD Calhoun, J Sui, K Kiehl, J Turner, E Allen, G Pearlson – 2012

Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model – J Sui, G Pearlson, A Caprihan, T Adali, KA Kiehl, J Liu, J Yamamoto, … – 2011

Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia – Q Yu, EB Erhardt, J Sui, Y Du, H He, D Hjelm, MS Cetin, S Rachakonda, … – 2015

A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia – H Yang, J Liu, J Sui, G Pearlson, VD Calhoun – 2010

Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach – Y Du, GD Pearlson, Q Yu, H He, D Lin, J Sui, L Wu, VD Calhoun – 2016

Function–structure associations of the brain: evidence from multimodal connectivity and covariance studies – J Sui, R Huster, Q Yu, JM Segall, VD Calhoun – 2014

Distinct and common aspects of physical and psychological self-representation in the brain: A meta-analysis of self-bias in facial and self-referential judgements – C Hu, X Di, SB Eickhoff, M Zhang, K Peng, H Guo, J Sui – 2016

Conclusion

Professor Jing Sui’s work demonstrates the transformative power of combining engineering, neuroscience, and artificial intelligence in understanding the human brain. Her contributions have not only advanced computational psychiatry but also created pathways for practical clinical applications. Through her leadership, mentorship, and groundbreaking research, she has left an enduring impact on global neuroscience. Her continued efforts are poised to deepen the integration of brain-inspired intelligence with mental health care, ensuring her legacy as a leading innovator in the field.

Muhammad Fahad | Neuroimaging | Best Researcher Award

Mr. Muhammad Fahad | Neuroimaging | Best Researcher Award

Mr. Muhammad Fahad | Tianjin University | China

Muhammad Fahad is a dedicated researcher and Ph.D. candidate in Information and Communication Engineering, with a strong specialization in medical image processing, deepfake detection, and speech enhancement. His academic journey, from computer science studies to advanced doctoral research, has been marked by a consistent focus on solving real-world problems through innovative technologies. Professionally, he has contributed in education, telecommunications, and computing operations, enriching his technical expertise and adaptability. His research contributions span multispectral breast cancer image enhancement, dual-energy X-ray processing, and AI-driven digital media verification, reflecting his ability to merge technical rigor with societal impact.

Profile

Orcid

Early Academic Pursuits

Muhammad Fahad began his academic journey with a deep interest in computing and information sciences, which laid the foundation for his career in advanced technology research. His undergraduate studies in computer science provided him with a solid grounding in programming, algorithms, and system design. Building on this foundation, he pursued a master’s degree in computer science with a specialization in image processing, where he developed a strong research orientation. His academic trajectory naturally progressed toward doctoral studies in information and communication engineering, where he refined his expertise in medical image processing, deepfake detection, and speech enhancement. This progression reflects a consistent commitment to mastering complex technological domains and applying them to real-world problem-solving.

Professional Endeavors

Before embarking on his doctoral research, Muhammad Fahad accumulated diverse professional experience across multiple sectors, enhancing both his technical and interpersonal skills. He served as an educator in schools and colleges, fostering knowledge transfer and strengthening his pedagogical abilities. His tenure as a drive test engineer in a leading telecommunications company in the United Arab Emirates allowed him to engage with large-scale network performance assessments, optimize data-driven decision-making processes, and ensure service quality. Additionally, his early work in computing operations in Pakistan strengthened his technical versatility and attention to detail, skills that would later support his complex research projects.

Contributions and Research Focus

Muhammad Fahad’s research portfolio is distinguished by its multidisciplinary scope, bridging healthcare, communication systems, and image processing technologies. His work in multispectral transmission breast cancer image enhancement demonstrates a commitment to improving diagnostic accuracy and medical imaging outcomes. His projects in deepfake detection address pressing concerns in digital media integrity, while his speech enhancement research advances accessibility and audio clarity in communication systems. He has also explored dual-energy X-ray image processing, contributing to enhanced imaging capabilities for security and medical applications. His work consistently integrates algorithmic innovation with practical applications, aiming to address societal and technological challenges.

Technological Expertise and Innovations

A hallmark of Muhammad Fahad’s work is his ability to integrate advanced computational techniques into diverse domains. His expertise encompasses designing algorithms for image enhancement, implementing deep learning frameworks for content verification, and developing noise reduction systems for speech clarity. By combining his knowledge of programming, signal processing, and artificial intelligence, he has created solutions that push the boundaries of what is possible in medical diagnostics, digital forensics, and communication technologies.

Accolades and Recognition

While his primary focus has been on research and development, Muhammad Fahad’s academic and professional efforts have earned him recognition within both academic and industrial settings. His ability to deliver high-impact results in collaborative projects has positioned him as a valuable contributor in research teams and professional networks. His active engagement with the global research community through platforms like ResearchGate reflects both his scholarly contributions and his openness to collaborative knowledge exchange.

Impact and Influence

The impact of Muhammad Fahad’s work extends beyond the laboratory, influencing both technical advancements and practical implementations. His research in medical imaging holds the potential to enhance diagnostic accuracy, enabling earlier detection and treatment planning in critical health conditions. His contributions to deepfake detection offer tools for safeguarding digital authenticity, a growing concern in modern communication. Similarly, his advancements in speech enhancement have applications in assistive technologies, improving quality of life for individuals with hearing challenges.

Legacy and Future Contributions

Looking ahead, Muhammad Fahad envisions continuing his work at the intersection of image processing, communication technologies, and healthcare innovations. His future research aims to integrate artificial intelligence more deeply into medical and multimedia analysis, creating systems that are not only technically sophisticated but also accessible and impactful for end users. Through sustained innovation and collaboration, he seeks to leave a legacy of technological solutions that address real-world challenges, strengthen digital trust, and contribute to advancements in global healthcare and communication infrastructure.

Publication

Diffusion model in modern detection: Advancing Deepfake techniques – Fazeela Siddiqui, Jiachen Yang, Shuai Xiao, Muhammad Fahad – 2025

Enhanced deepfake detection with DenseNet and Cross-ViT – Fazeela Siddiqui, Jiachen Yang, Shuai Xiao, Muhammad Fahad – 2025

Efficient and Accurate Brain Tumor Classification Using Hybrid MobileNetV2–Support Vector Machine for Magnetic Resonance Imaging Diagnostics in Neoplasms – Mohammed Jajere Adamu, Halima Bello Kawuwa, Li Qiang, Charles Okanda Nyatega, Ayesha Younis, Muhammad Fahad, Salisu Samaila Dauya – 2024

Conclusion

Through a blend of academic excellence, multidisciplinary expertise, and innovative problem-solving, Muhammad Fahad has positioned himself as a valuable contributor in the fields of healthcare technology, digital media security, and communication systems. His work not only advances technological boundaries but also addresses critical global challenges. With a clear vision for integrating artificial intelligence into medical and multimedia applications, he is set to make lasting contributions that will benefit both academic research and practical implementations worldwide.

Daon Hwang | Clinical Neuroscience | Best Researcher Award

Mr. Daon Hwang | Clinical Neuroscience | Best Researcher Award

Mr. Daon Hwang,  Depatment of Physical Therapy, Korea Natiional University of Transportation,  South Korea.

Daon Hwang is a dedicated physical therapist and Ph.D. candidate at Korea National University of Transportation, with a strong academic and clinical foundation in adult neurological rehabilitation. His research portfolio includes six completed projects and six peer-reviewed publications, focusing on stroke rehabilitation, gait analysis, neurorehabilitation, and assistive device development. With a practical background in clinical therapy and consulting experience in device usability, he effectively bridges the gap between research and real-world application. His active involvement in professional organizations further enriches his contributions to the rehabilitation field.

Profile

Orcid

🎓 Early Academic Pursuits

Daon Hwang began his academic journey with a deep interest in the human body and its recovery mechanisms, leading him to pursue a career in physical therapy. He earned both his Bachelor’s and Master’s degrees in Physical Therapy from Korea National University of Transportation (KNUT). His early academic years were marked by diligence and a curiosity-driven approach to the complexities of neurological rehabilitation. His strong academic performance and growing passion for evidence-based practice set the stage for his current doctoral research.

💼 Professional Endeavors

As a licensed physical therapist, Daon Hwang has accumulated meaningful clinical experience, particularly in the field of adult neurological rehabilitation. His hands-on work with stroke patients has fueled his commitment to integrating practical therapy with innovative research. His current role as a Ph.D. candidate at KNUT allows him to bridge clinical practice with academic exploration, where he also provides consultancy on assistive devices. Daon continues to evolve both as a practitioner and as a scholar in the rehabilitation sciences.

🧠 Contributions and Research Focus

Daon’s primary research focuses include stroke rehabilitation, neurorehabilitation, gait analysis, and the development of assistive technologies. He has successfully completed six research projects, exploring diverse aspects such as proprioceptive training and the usability of rehabilitation devices. His scholarly output includes six peer-reviewed journal publications—two in SCI-indexed journals and four in KCI-indexed journals. These works contribute to enhancing therapeutic protocols and improving patients’ functional outcomes, particularly in post-stroke recovery.

🧪 Research Innovation and Impact

Daon’s innovative contributions are evident in his work with assistive device usability, having collaborated on three industry consulting projects to improve device design and user experience for stroke patients. His research has not only advanced academic knowledge but also offered real-world applicability in clinical settings. His studies often highlight the integration of biomechanical analysis and rehabilitation techniques to create more personalized and effective interventions.

🏅 Accolades and Professional Involvement

While Daon Hwang has not yet published books or acquired patents, his membership in several esteemed professional bodies reflects his dedication to continued learning and contribution to the field. He is an active member of the Korean Academy of Orthopedic Manipulative Physical Therapy, the Korean Physical Therapy Association, and the Korea Proprioceptive Neuromuscular Facilitation Association. Through these affiliations, he stays at the forefront of developments in physical therapy and rehabilitation science.

🌍 Influence and Collaboration

Though he has not formally reported collaborative research projects, Daon’s consulting work and clinical partnerships demonstrate a growing sphere of influence. His findings are increasingly referenced by peers and practitioners, particularly in the areas of gait mechanics and neuro-motor rehabilitation. His dual role in academia and practice ensures his research remains grounded in clinical relevance.

🔮 Legacy and Future Contributions

Looking ahead, Daon Hwang aspires to further integrate technology with neurorehabilitation strategies, aiming to develop more efficient, adaptive tools for stroke survivors. His doctoral work and future post-doctoral goals center on refining rehabilitative methods through data-driven research and interdisciplinary collaboration. With a vision of contributing meaningfully to global rehabilitation science, Daon is poised to leave a lasting legacy of innovation, empathy, and excellence in physical therapy.

Publication

  • Title: Usability Test for an Over-Ground Walking Assistance Robotic Device Based on the Mecanum Wheel
    Authors: Daon Hwang; EunPyeong Choi; Ki Hun Cho
    Year: 2025

 

  • Title: Changes in Balance Ability, Physical Performance and Lower Extremity Proprioception according to the Compression Stockings in University Students
    Authors: Daon Hwang; Hyeong Gyu Kim; Na Young Kang; Eun Seo Park; Hyun Young Yoo; Jun Young Lee; Seo Yeong Jang; Cheol Woo Hwang; Ki Hun Cho
    Year: 2025

 

  • Title: Usability Test for a Cane-Combined Weight Support Feedback Device
    Authors: Daon Hwang; Ki Hun Cho
    Year: 2024

 

  • Title: Usability Test for Motion Tracking Gait Assistive Walker
    Authors: Daon Hwang; Ki Hun Cho
    Year: 2023

 

  • Title: The Effect of Mirror Therapy on the Balance, Gait and Motor Function in Patients with Subacute Stroke: A Pilot Study
    Authors: Min-Su Song; Soon-Hee Kang
    Year: 2021

 

  • Title: Effect of Mirror Therapy on the Balance, Gait and Motor Function in Patients with Subacute Stroke
    Authors: Min-Su Song; Soon-Hee Kang
    Year: 2021

 

Conclusion

Driven by a passion for enhancing recovery outcomes in stroke patients, Daon Hwang has positioned himself as a promising scholar and practitioner in the field of physical therapy. His blend of academic rigor, clinical expertise, and innovation in assistive technologies reflects a career marked by meaningful impact and ongoing growth. As he advances toward completing his Ph.D., his work continues to shape the future of neurorehabilitation—promoting evidence-based practices and contributing to patient-centered healthcare innovations.

Che Ping Cheng | Translational Neuroscience | Best Researcher Award

Prof. Che Ping Cheng | Translational Neuroscience | Best Researcher Award

Prof. Che Ping Cheng, Wake Forest University School of Medicine, United States.

Dr. Che Ping Cheng, M.D., Ph.D., FAHA, is a distinguished cardiovascular physiologist and internal medicine specialist whose career has been dedicated to advancing the understanding of heart function and failure. From earning his medical degree in China to completing a Ph.D. in Physiology at Wayne State University, and later conducting pivotal postdoctoral research at Wake Forest School of Medicine, Dr. Cheng has consistently pursued excellence in science and education. His research on ventricular mechanics, volume loading, and heart failure has significantly influenced both experimental cardiology and clinical practice. Recognized as a Fellow of the American Heart Association, he is also a dedicated mentor, shaping the next generation of cardiovascular researchers through his academic leadership.

Profile

Scopus

 

🎓 Early Academic Pursuits

Dr. Che Ping Cheng’s journey into medicine and science began in Nanjing, China, where he earned his M.D. degree from Nanjing Railway Medical University in 1977. His early academic path reflected a deep interest in understanding the intricacies of human health, particularly in cardiovascular physiology. Driven by a desire to expand his knowledge and research capabilities, Dr. Cheng pursued his Ph.D. in Physiology at Wayne State University School of Medicine in Detroit, Michigan, completing his degree in 1986. Under the mentorship of Dr. Robert S. Shepard, his doctoral work focused on exploring the mechanisms of cardiovascular response to volume loading in a canine model with tricuspid valvulectomy, setting a strong foundation for his lifelong focus on heart function and disease mechanisms.

🩺 Professional Endeavors

Following his academic training, Dr. Cheng embarked on postdoctoral studies at the Bowman Gray School of Medicine (now part of Wake Forest School of Medicine), where he continued to cultivate his expertise in internal medicine and cardiovascular physiology. Between 1986 and 1988, he served as a Postdoctoral Fellow under the guidance of Dr. William C. Little. His research during this period focused on ventricular dynamics and the physiological factors affecting active ventricular filling, which would later inform his broader work on heart failure and cardiac function. Dr. Cheng has since remained at Wake Forest School of Medicine, where he is currently a distinguished member of the Section on Cardiovascular Medicine.

🧪 Contributions and Research Focus

Dr. Cheng’s career has been characterized by a deep commitment to advancing the understanding of cardiac hemodynamics, ventricular interaction, and heart failure mechanisms. His research has explored how ventricular function responds under altered physiological states, and how these responses inform disease progression and treatment strategies. His early animal model studies have provided critical insights into the interplay between structural and functional changes in the heart, especially in the context of diastolic dysfunction and volume overload conditions. Dr. Cheng has also made significant strides in translating these findings to clinical contexts, influencing how cardiologists approach diagnosis and therapy.

🏅 Accolades and Recognition

Throughout his career, Dr. Cheng has received considerable recognition for his scholarly contributions. He is a Fellow of the American Heart Association (FAHA), an honor that reflects his standing in the field of cardiovascular research and his commitment to scientific excellence. His work has earned the respect of colleagues and institutions alike, leading to numerous invitations to contribute to collaborative projects, serve on peer-review panels, and mentor future generations of cardiovascular researchers.

🌍 Impact and Influence

Dr. Cheng’s work has had a lasting impact on both experimental and clinical cardiology. By elucidating the mechanistic basis of ventricular dysfunction, he has helped shift paradigms in heart failure management, particularly in the areas of ventricular interdependence and preload responsiveness. His research findings are frequently cited in textbooks and high-impact journals, and they continue to inform guidelines for cardiac care and interventions. Through his work at Wake Forest and beyond, Dr. Cheng has played a pivotal role in bridging laboratory discoveries with bedside applications.

👨‍🏫 Legacy and Mentorship

As a respected mentor and educator, Dr. Cheng has dedicated a significant portion of his career to training medical students, residents, and postdoctoral fellows. His mentorship has influenced numerous emerging scholars in cardiovascular medicine, many of whom have gone on to successful academic and clinical careers. His guidance combines a rigorous scientific approach with a deep sense of responsibility to patient care and scientific integrity, shaping a legacy that extends well beyond his own research output.

🔬 Future Contributions and Vision

Looking ahead, Dr. Cheng remains committed to the advancement of cardiovascular research, with a continued focus on uncovering the cellular and mechanical determinants of heart disease. His vision includes fostering collaborative projects that integrate biomedical engineering, imaging, and computational modeling to further understand cardiac performance. With decades of experience and a forward-thinking approach, Dr. Cheng’s future contributions are poised to leave a lasting mark on the field of translational cardiovascular medicine.

Publication

  1. Title: Increased CaMKII activation and contrast changes of cardiac β1-and β3-Adrenergic signaling pathways in a humanized angiotensinogen model of hypertension
    Authors: Sun, Xiaoqiang; Cao, Jing; Chen, Zhe; Ferrario, Carlos M.; Cheng, Cheping
    Year: 2023
    Journal: Heliyon

 

  1. Title: Calmodulin-dependent protein kinase II activation promotes kidney mesangial expansion in streptozotocin-induced diabetic mice
    Authors: Mikhailov, Alexei V.; Liu, Yixi; Cheng, Hengjie; Lin, Jen Jar; Cheng, Cheping
    Year: 2022
    Journal: Heliyon

 

  1. Title: Chronic GPR30 agonist therapy causes restoration of normal cardiac functional performance in a male mouse model of progressive heart failure: Insights into cellular mechanisms
    Authors: Zhang, Xiaowei; Li, Tiankai; Cheng, Hengjie; Groban, Leanne; Cheng, Cheping
    Year: 2021
    Journal: Life Sciences

 

  1. Title: Chronic Ca2+/calmodulin-dependent protein Kinase II inhibition rescues advanced heart failure
    Authors: Liu, Yixi; Shao, Qun; Cheng, Hengjie; Zhao, David Xiao Ming; Cheng, Cheping
    Year: 2021
    Journal: Journal of Pharmacology and Experimental Therapeutics

 

  1. Title: The Angiotensin-(1–12)/Chymase axis as an alternate component of the tissue renin angiotensin system
    Authors: Ferrario, Carlos M.; Groban, Leanne; Wang, Hao; Sun, Xuming; Ahmad, Sarfaraz
    Year: 2021
    Journal: Molecular and Cellular Endocrinology

 

  1. Title: Reversal of angiotensin-(1–12)-caused positive modulation on left ventricular contractile performance in heart failure: Assessment by pressure-volume analysis
    Authors: Li, Tiankai; Zhang, Zhi; Zhang, Xiaowei; Ferrario, Carlos M.; Cheng, Cheping
    Year: 2020
    Journal: International Journal of Cardiology

 

  1. Title: Female Heart Health: Is GPER the Missing Link?
    Authors: Groban, Leanne; Tran, Q. K.; Ferrario, Carlos M.; Wang, Hao; Lindsey, Sarah H.
    Year: (Not specified, but likely 2020 or 2021)
    Journal: (Not specified)

 

🏁 Conclusion

Dr. Cheng’s legacy is one of intellectual rigor, clinical relevance, and mentorship. His work has not only deepened the scientific understanding of cardiac physiology but has also shaped modern approaches to diagnosing and managing heart failure. With a career spanning continents and disciplines, Dr. Cheng continues to be a guiding force in cardiovascular medicine, and his future contributions are anticipated to further advance the frontiers of heart research and patient care.

 

Peng Jun | Cellular Neuroscience | Best Researcher Award

Prof. Peng Jun | Cellular Neuroscience | Best Researcher Award

Prof. Peng Jun, Qilu hospital of Shandong University, China.

Professor Jun Peng is a distinguished leader in hematology, currently serving as Vice President of Qilu Hospital of Shandong University and Director of the Department of Hematology. His research is deeply rooted in the immunological pathogenesis and immune tolerance of primary immune thrombocytopenia (ITP), where he has made significant breakthroughs, including the publication of 14 papers in Blood. With a career supported by prestigious national awards, and leadership in 15 high-level research projects, Professor Peng is also a vital figure in Chinese hematology societies and editorial boards of leading journals. His academic rigor, clinical insight, and mentorship continue to shape the future of hematological science in China and beyond.

Profile

Scopus

🎓 Early Academic Pursuits

Professor Jun Peng embarked on his academic journey with a strong commitment to medicine and hematological sciences. From the outset, he exhibited exceptional academic talent and dedication, leading him to pursue both an M.D. and Ph.D. His early education laid a robust foundation for his future specialization in hematology, particularly in the complex field of immunological disorders. His doctoral work, recognized nationally, foreshadowed the groundbreaking contributions he would later make in immune thrombocytopenia research.

🩺 Professional Endeavors

Currently serving as the Vice President of Qilu Hospital of Shandong University, Professor Peng also holds the roles of Chief Physician, Professor, and Ph.D./M.D. Advisor, in addition to being the Director of the Department of Hematology. His clinical and academic responsibilities are carried out with unwavering diligence, mentoring future medical experts while overseeing high-level clinical operations. As a Distinguished Professor of Shandong University, he is actively engaged in shaping the university’s medical excellence on both national and global stages.

🔬 Contributions and Research Focus

At the heart of Professor Peng’s career is his pioneering work on the immunological pathogenesis and immune tolerance of primary immune thrombocytopenia (ITP). He has made substantial contributions to understanding the autoimmune mechanisms that underlie ITP, one of the most challenging hematologic disorders. His scholarly dedication is evidenced by the publication of 14 papers in Blood, a leading journal in hematology, where he served as corresponding or co-corresponding author. His research, grounded in clinical insight and scientific precision, has contributed new perspectives on immune regulation in hematologic diseases.

🏆 Accolades and Recognition

Professor Peng’s excellence has been recognized with numerous prestigious awards. These include the National Science Fund for Distinguished Young Scholars, which highlights his scientific creativity and impact at a young age. He is also a recipient of the One-Hundred National Outstanding Doctoral Dissertation Award, a testament to the academic rigor of his early research. Additionally, he earned the First Prize of the Natural Science Award for Outstanding Achievements in Scientific Research from the Ministry of Education and the Science and Technology Progress Award, reflecting both his academic brilliance and practical impact in the medical field.

🧪 Impact and Influence

Beyond research publications, Professor Peng has significantly influenced the broader scientific and medical communities. As a principal investigator, he has led fifteen national and ministerial-level research projects, including those funded by the National Natural Science Foundation of China and the 973 Program under the Ministry of Science and Technology. His leadership extends to active roles in national academic societies, including the Thrombosis and Hemostasis Group of the Chinese Society of Hematology and the Professional Committee of Experimental Hematology of the Chinese Society of Pathophysiology. These positions allow him to shape the direction of hematological research and clinical guidelines in China.

📚 Academic Leadership and Editorial Roles

A passionate advocate for knowledge dissemination, Professor Peng is a key editorial board member for several respected journals such as Thrombosis Journal, Thrombosis Research, Journal of Clinical Hematology, and the Chinese Journal of Hematology. Through these roles, he ensures that cutting-edge research in hematology is critically evaluated and shared widely, fostering a culture of scientific excellence and collaboration across the globe.

🌟 Legacy and Future Contributions

Professor Jun Peng’s legacy is being forged not only through his past achievements but also through his continued commitment to the advancement of hematological science. His influence spans clinical innovation, academic mentorship, and scientific discovery. As he continues to push the boundaries of understanding in ITP and immune tolerance, he inspires a new generation of physician-scientists. The impact of his work promises to resonate for years to come, offering hope and healing for patients and propelling China’s medical research onto the world stage.

Publication

  • Title: Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP)
    Authors: Qizhao Li, Geneviève Marcoux, Yuefen Hu, Jung Peng, John W. Semple
    Year: 2024

 

  • Title: Quantitative detection of macular microvascular abnormalities identified by optical coherence tomography angiography in different hematological diseases
    Authors: Tianzi Jian, Fabao Xu, Guihua Li, Li Zhang, Jung Peng
    Year: 2024

 

  • Title: Nicotinamide enhances Treg differentiation by promoting Foxp3 acetylation in immune thrombocytopenia
    Authors: Ju Li, Cheng Zhang, Yuefen Hu, Qi Feng, Xiang Hu
    Year: 2024

 

  • Title: The effects of complement-independent, autoantibody-induced apoptosis of platelets in immune thrombocytopenia (ITP)
    Authors: Lin Sun, Yichen Zhang, Ping Chen, Jung Peng, Zi Sheng
    Year: 2024

 

  • Title: Post-transplant lymphoproliferative disorders after allogeneic hematopoietic stem cell transplantation: a case report, meta-analysis, and systematic review
    Authors: You Yuan Su, Yafei Yu, Zhenyu Yan, Jung Peng, Xinguang Liu
    Year: 2024

 

  • Title: Ion channel Piezo1 activation aggravates the endothelial dysfunction under a high glucose environment
    Authors: Xiaoyu Zhang, Shaoqiu Leng, Xinyue Liu, Shuwen Wang, Jung Peng
    Year: 2024

 

  • Title: Intelligent dual-modality label-free cell classification with light scattering imaging and Raman spectra measurements
    Authors: Faihaa Mohammed Eltigani, Xiaoyu Zhang, Min Liu, Jung Peng, Xuantao Su
    Year: 2024

 

  • Title: Eltrombopag plus diacerein vs eltrombopag in patients with ITP: a multicenter, randomized, open-label phase 2 trial
    Authors: Lu Sun, Xiaoyang Huang, Juan Wang, Ming Hou, Yu Hou
    Year: 2024

 

  • Title: Risk Factors for Mortality in Critically Ill Patients with Coagulation Abnormalities: A Retrospective Cohort Study
    Authors: Qiuyu Guo, Jung Peng, Tichao Shan, Miao Xu
    Year: 2024

 

  • Title: Platelet-derived TGF-β1 induces functional reprogramming of myeloid-derived suppressor cells in immune thrombocytopenia
    Authors: Lingjun Wang, Haoyi Wang, Mingfang Zhu, Ming Hou, Yu Hou
    Year: 2024

 

✅ Conclusion

Through his pioneering research, unwavering clinical dedication, and impactful academic leadership, Professor Jun Peng stands at the forefront of immuno-hematology. His work not only deepens scientific understanding of ITP but also contributes directly to improved patient outcomes. As he continues to inspire through teaching, research, and innovation, Professor Peng’s legacy is one of excellence, influence, and ongoing transformation in the global hematology community.

 

Ibrahim Serag | Neuroimaging | Best Researcher Award

Dr. Ibrahim Serag | Neuroimaging | Best Researcher Award

Dr. Ibrahim Serag, Faculty of Medicine Mansoura university, Egypt.

Dr. Ibrahim Hamdino Ibrahim Serag is a dynamic intern doctor, clinical researcher, and emerging neurosurgical leader based in Mansoura, Egypt. With a stellar academic record from Mansoura University Faculty of Medicine, he has consistently demonstrated excellence both in the classroom and in clinical practice. His focused interest in neurosurgery, along with a profound commitment to medical research, has positioned him at the forefront of Egypt’s next generation of clinician-scientists.

Profile

Google Scholar

 

🧠 Early Academic Pursuits

Dr. Ibrahim Serag embarked on his journey in medicine with an unwavering curiosity for the human brain and its intricate workings. From the very beginning of his academic life at Mansoura University Faculty of Medicine, he stood out for his intellectual commitment and passion for neurosurgery. His dedication translated into academic excellence, earning him an impressive GPA of 3.78 and numerous distinctions across all courses. Early in his studies, he was drawn to the field of neurosurgery, not just for its technical challenges but for its potential to dramatically transform patient lives.

🩺 Professional Endeavors

As an intern doctor, Dr. Serag has been immersed in clinical practice while maintaining strong involvement in academic research. His elective neurosurgical rotation at Mansoura University’s hospital offered him valuable, hands-on experience that further fueled his desire to pursue neurosurgery. His professional path also includes significant leadership roles within NEGIDA Academy, where he serves as both a clinical researcher and course co-instructor, reflecting his dedication to both practice and pedagogy.

🔬 Contributions and Research Focus

Dr. Serag has carved a strong niche in neurosurgical research, particularly within the domains of systematic reviews, meta-analyses, and neuroimaging innovations. With over a dozen publications in high-impact journals and an H-index of 5, he has become a recognized voice in clinical neurology and neurosurgical diagnostics. He leads multiple collaborative research groups under Mansoura Manchester Research Society, Tanta University, and TSRA, focusing on evidence-based medicine and the clinical application of neuroscience. His work often explores the comparative effectiveness of neurosurgical techniques such as drainage, irrigation, and anesthetic modalities in chronic subdural hematomas, as well as neuroprotective agents and AI-assisted diagnostics.

🏆 Accolades and Recognition

Dr. Serag’s work has been acknowledged through multiple prestigious awards, reflecting both the depth and innovation of his research. He was honored with the Best Poster Presentation at the 4th and 5th Annual Research Days at Mansoura University, and also at the Alex Neuroscience Conference (ACN 2024). His academic distinction has earned him travel grants for ISA 2024 and ICCN 2024, affirming his growing reputation on both national and international platforms. Additionally, he received honors from university deans, cementing his place among the top emerging minds in his field.

🌍 Impact and Influence

Beyond personal accomplishments, Dr. Serag’s influence resonates through the many research groups he leads and the countless students and young doctors he mentors. His role as a team leader and course co-instructor at NEGIDA Academy enables him to share knowledge and cultivate a culture of inquiry and innovation among Egypt’s next generation of neurosurgeons. His collaborations extend internationally, where he works with senior academics and clinicians to bridge gaps in neuroclinical research and global healthcare accessibility.

📚 Legacy and Future Contributions

With a vision that goes beyond borders, Dr. Serag is determined to pioneer transformational change in neurosurgical research and practice. His future aspirations are deeply rooted in advancing minimally invasive neurosurgical techniques, expanding AI integration in neurodiagnostics, and fostering multinational research networks. As he seeks a neurosurgical residency, his goal remains steadfast: to blend clinical mastery with scholarly rigor, pushing the boundaries of neurological science for generations to come.

 

Publication

  • Title: Drainage versus no drainage after burr-hole evacuation of chronic subdural hematoma: a systematic review and meta-analysis of 1961 patients
    Authors: A Aljabali, AM Sharkawy, B Jaradat, I Serag, NM Al-Dardery, …
    Year: 2023

 

  • Title: Using artificial intelligence to improve body iron quantification: A scoping review
    Authors: AJ Nashwan, IM Alkhawaldeh, N Shaheen, I Albalkhi, I Serag, K Sarhan, …
    Year: 2023

 

  • Title: An updated systematic review of neuroprotective agents in the treatment of spinal cord injury
    Authors: I Serag, M Abouzid, A Elmoghazy, K Sarhan, SA Alsaad, RG Mohamed
    Year: 2024

 

  • Title: Irrigation versus no irrigation in the treatment of chronic subdural hematoma: An updated systematic review and meta-analysis of 1581 patients
    Authors: A Aljabali, I Serag, S Diab, AZ Alhadeethi, M Abdelhady, IM Alkhawaldeh, …
    Year: 2024

 

  • Title: Local anesthesia with sedation and general anesthesia for the treatment of chronic subdural hematoma: a systematic review and meta-analysis
    Authors: MA Abdelhady, A Aljabali, M Al-Jafari, I Serag, A Elrosasy, A Atia, A Ehab, …
    Year: 2024

 

  • Title: Insights into head and neck cancer research in Egypt: A scoping review
    Authors: MH El din Moawad, MM Shalaby, MA Sadeq, M Al-Jafari, JW A’amar, …
    Year: 2023

 

  • Title: Exploring the mechanisms and therapeutic approaches of mitochondrial dysfunction in Alzheimer’s disease: An educational literature review
    Authors: MHED Moawad, I Serag, IM Alkhawaldeh, A Abbas, A Sharaf, S Alsalah, …
    Year: 2024

 

  • Title: Postoperative elevated bed header position versus supine in the management of chronic subdural hematoma: a systematic review and meta-analysis
    Authors: I Serag, M Abdelhady, AA Awad, A Wageeh, A Shaboub, RH Elhalag, …
    Year: 2024

 

  • Title: Neuro-oncological research output in Africa: a scoping review of primary brain tumors
    Authors: MHE Moawad, M Al-Jafari, AM Taha, JW A’amar, O Alsayed, T Fayad, …
    Year: 2024

 

  • Title: Evaluating the efficacy and safety of platelet-rich plasma injection for erectile dysfunction: a systematic review and meta-analysis of randomized controlled trials
    Authors: M Deabes, MG Deameh, BA Bani Irshid, AH Al Darraji, I Serag, …
    Year: 2024

 

🧩 Conclusion

With a rare blend of clinical ambition, research innovation, and academic leadership, Dr. Ibrahim Serag is well on his path to becoming a transformative figure in neurosurgery. His ongoing contributions to evidence-based medicine, along with his global collaborations and scholarly achievements, underline a future filled with promise. Driven by curiosity and compassion, he aims not only to heal patients but to reshape how brain diseases are diagnosed and treated—leaving a lasting impact on the field of neurosurgery.