Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang, University of Virginia, United States.

Dr. Aiying Zhang is a rising scholar in the field of mental health data science, currently serving as an Assistant Professor at the University of Virginia and a Faculty Member at the UVA Brain Institute. Her academic foundation spans statistics, biomedical engineering, and clinical biostatistics, acquired from esteemed institutions including USTC, Tulane University, and Columbia University. Her research focuses on developing advanced computational and statistical tools—such as graphical models and multimodal fusion—to decode complex brain data from imaging and genetics. She applies these innovations to better understand and predict psychiatric conditions such as schizophrenia and Alzheimer’s disease. Her work is distinguished by its interdisciplinary nature, translational relevance, and potential to reshape clinical approaches to mental health.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Aiying Zhang’s journey into the realm of data science and mental health research began with a strong foundation in quantitative sciences. She earned her Bachelor of Science degree in Statistics from the prestigious School for the Gifted Young at the University of Science and Technology of China (USTC) in 2014. Driven by a passion for biomedical innovation and its intersection with human health, she pursued a Ph.D. in Biomedical Engineering from Tulane University, which she completed in 2021. Her graduate years were marked by deep inquiry into statistical modeling and neuroimaging, laying the groundwork for her later interdisciplinary research. She further honed her expertise through postdoctoral training in Clinical Biostatistics and Psychiatry at Columbia University Irving Medical Center, where she blended statistical rigor with clinical insight.

💼 Professional Endeavors

Dr. Zhang is currently an Assistant Professor of Data Science at the University of Virginia, where she has been on the tenure-track faculty since August 2023. She also holds a concurrent position as a Faculty Member at the UVA Brain Institute, underscoring her active role in advancing brain research across institutional boundaries. Prior to her academic appointment at UVA, she served as a Research Scientist II at the New York State Psychiatric Institute, contributing to high-impact psychiatric research. Her professional journey also includes research assistantships at Tulane University and the University of Florida, roles in which she cultivated strong collaborative and translational research skills.

🧠 Contributions and Research Focus

Dr. Zhang’s research lies at the intersection of data science, neuroscience, and mental health. She specializes in developing advanced statistical and computational methodologies to investigate the biological underpinnings of psychiatric and neurodevelopmental disorders. Her work prominently features the use of graphical models—both directed and undirected—and machine learning techniques to analyze complex datasets, such as MRI, DTI, fMRI, MEG, and various genomic modalities including SNP and DNA methylation. Her research has contributed to a deeper understanding of conditions like schizophrenia, Alzheimer’s disease, obsessive-compulsive disorder, and anxiety disorders, through the lens of multimodal data fusion and integrative neurogenetics.

🧪 Innovation in Mental Health Data Science

A distinctive hallmark of Dr. Zhang’s scholarship is her innovative application of multimodal fusion techniques to disentangle the complexities of typical and atypical brain development. Her work leverages high-dimensional neuroimaging and genetic data to draw meaningful inferences about mental health trajectories. She is particularly focused on building interpretable models that bridge the gap between data and clinical insight, thereby enabling earlier and more precise diagnostics. By combining machine learning with biomedical expertise, her contributions pave the way for next-generation tools in psychiatry and neuroscience.

🏅 Accolades and Recognition

Throughout her academic and professional trajectory, Dr. Zhang has earned widespread respect for her analytical acumen and interdisciplinary collaborations. Her postdoctoral role at Columbia, a hub for clinical psychiatry and biostatistics, positioned her among leaders in the field and enriched her research portfolio with translational applications. Her selection as faculty at a leading institution like UVA further reflects recognition of her scholarly excellence and her potential to drive future innovations in mental health data science.

🌍 Impact and Influence

Dr. Zhang’s work has significant implications for both the scientific community and clinical practice. Her methods empower researchers and clinicians alike to draw meaningful patterns from multimodal datasets, thereby advancing precision psychiatry. Moreover, her collaborative efforts across biomedical engineering, statistics, and clinical disciplines have fostered integrative frameworks that extend beyond academic settings into real-world applications. Her contributions are helping to shape a more data-driven and personalized future in mental health care.

🔮 Legacy and Future Contributions

As she continues her academic journey, Dr. Zhang aims to expand her research frontiers by exploring dynamic brain-behavior associations and improving the interpretability of AI models in clinical contexts. With a commitment to mentorship and open science, she is building a legacy rooted in intellectual rigor, innovation, and societal relevance. Her future contributions are expected to not only deepen our understanding of mental health disorders but also inspire a new generation of data scientists dedicated to neuroscience and human well-being.

Publication

  • Leverage multimodal neuro-imaging and genetics to identify causal relationship between structural and functional connectivity and ADHD with Mendelian randomization
    C Ji, S Lee, S Sequeira, J Jin, A Zhang2025

 

  • Integrated brain connectivity analysis with fmri, dti, and smri powered by interpretable graph neural networks
    G Qu, Z Zhou, VD Calhoun, A Zhang, YP Wang2025

 

  • Altered hierarchical rank in intrinsic neural time-scales in autism spectrum disorder
    A Solomon, W Yu, J Rasero, A Zhang2025

 

  • A Privacy-Preserving Domain Adversarial Federated learning for multi-site brain functional connectivity analysis
    Y Zhang, L Wang, KJ Su, A Zhang, H Zhu, X Liu, H Shen, VD Calhoun, …2025

 

  • A Novel GNN Framework Integrating Neuroimaging and Behavioral Information to Understand Adolescent Psychiatric Disorders
    W Yu, G Qu, Y Kim, L Xu, A Zhang2025

 

  • A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence
    A Zhang, G Zhang, B Cai, TW Wilson, JM Stephen, VD Calhoun, YP Wang2024

 

  • Exploring hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee2024

 

  • Time‐varying dynamic Bayesian network learning for an fMRI study of emotion processing
    L Sun, A Zhang, F Liang2024

 

  • Altered hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee, …2024

 

  • Associations Between Brain Connectivity and Psychiatric Symptoms in Children: Insights into Adolescent Mental Health
    D Mutu, K Ji, X He, S Lee, S Sequeira, A Zhang2024

 

🧾 Conclusion

Dr. Zhang’s journey exemplifies a seamless integration of data science and neuroscience to address pressing mental health challenges. Her innovative use of multimodal data and machine learning not only contributes to scientific advancement but also enhances real-world clinical decision-making. As she continues to pioneer research at the intersection of computation and psychiatry, her influence is poised to grow, shaping the future of precision mental health care and empowering both academia and clinical practice through data-driven insights.

 

Fabiano Papaiz | Computational Neuroscience | Best Researcher Award

Prof. Fabiano Papaiz | Computational Neuroscience | Best Researcher Award

Prof. Fabiano Papaiz, IFRN, Brazil.

Fabiano Papaiz is a dedicated academic and professional in the field of education and technology, affiliated with the Federal Institute of Education, Science, and Technology of Rio Grande do Norte (IFRN) in Brazil. With a strong foundation in the intersection of education and technology, his work focuses on integrating modern technological innovations into educational practices. Through his research and professional endeavors, Papaiz has contributed significantly to advancing educational methods and improving learning environments. His accolades reflect his influence both within Brazil and internationally. His research aims to enhance educational outcomes by leveraging digital tools and resources, benefiting the academic community and shaping the future of learning.

Profile

Orcid

 

📚 Early Academic Pursuits

Fabiano Papaiz began his academic journey in Brazil, where he cultivated a strong foundation in the field of education and technology. His early academic pursuits were centered around exploring the intersections of education and technological advancements. With a keen interest in applied sciences, he honed his knowledge and skills through his academic experiences, leading him to a path of lifelong learning and research. Papaiz’s commitment to education in Brazil is evident, and his passion for technology-driven academic progress is one of the key pillars of his professional career.

💻 Professional Endeavors

Currently affiliated with the Federal Institute of Education, Science, and Technology of Rio Grande do Norte (IFRN), Fabiano Papaiz plays a pivotal role in shaping the future of education and technology. At IFRN, he is part of the DATINF (Department of Information Technology), where he works on integrating modern technological solutions with academic practices. His professional journey reflects his dedication to advancing educational methodologies and bridging the gap between technology and learning. As part of the institution, Papaiz has contributed to a wide range of educational initiatives that aim to enhance the learning experience in Brazil, especially in the field of information technology.

🔬 Contributions and Research Focus

Papaiz’s research interests lie in the dynamic field of information technology and its application to educational contexts. His research focuses on leveraging technological innovations to improve educational outcomes, develop new learning tools, and address contemporary challenges in the digital age. Fabiano’s academic contributions have been significant, with a strong emphasis on the role of technology in shaping modern education. His work not only influences the academic community but also helps to create a more tech-savvy generation of students who can navigate and thrive in a rapidly evolving digital world.

🏆 Accolades and Recognition

Throughout his career, Fabiano Papaiz has received numerous accolades for his contributions to education and technology. His work at IFRN has been recognized not only within Brazil but also internationally, as he continues to share his expertise with global academic and technological communities. His dedication to advancing the integration of information technology into education has earned him admiration from peers, students, and academic institutions alike. His reputation as a thought leader in the intersection of education and technology is well-established, marking him as an influential figure in his field.

🌍 Impact and Influence

Fabiano Papaiz’s work has made a profound impact on both the academic and technological landscapes of Brazil. His influence extends beyond the classroom, as his research and professional endeavors have shaped the way information technology is applied in education. Through his leadership and innovation, he has fostered the growth of more effective learning environments, enhanced by the use of digital tools and resources. His contributions have not only benefited his institution but also contributed to the wider educational community by offering solutions that address modern teaching and learning needs.

Publication

  • Title: Predicting ALS progression using Autoregressive deep learning models
    Authors: Fabiano Papaiz, Mario Emílio Teixeira Dourado, Jr, Ricardo Alexsandro de Medeiros Valentim, Felipe Ricardo dos Santos Fernandes, João Paulo Queiroz dos Santos, Antonio Higor Freire de Morais, Fernanda Brito Correia, Joel Perdiz Arrais
    Year: 2025

 

  • Title: RR3D: Uma solução para renderização remota de imagens médicas tridimensionais
    Author: Fabiano Papaiz
    Year: 2013

 

Conclusion

Fabiano Papaiz’s career exemplifies the transformative power of technology in education. His contributions, ranging from research to institutional leadership, have made a lasting impact on the integration of technology in educational settings. As he continues to innovate and lead, Papaiz’s legacy will undoubtedly shape the future of education, paving the way for more inclusive and effective learning environments. His ongoing work ensures that technology will remain a key driver in educational progress, with the potential to benefit generations of students and educators worldwide.