Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li, China Medical University,  China.

Professor Baoman Li stands at the forefront of contemporary neuroscience and pharmacology, merging deep academic knowledge with impactful translational research. From his foundational training at China Medical University to his postdoctoral work in the United States, he has consistently demonstrated excellence in exploring the physiological and molecular mechanisms of the central nervous system. Currently a Professor and Department Director, his work has revealed novel insights into cerebrospinal fluid transport, neuronal excitability regulation, and bipolar disorder modeling. These discoveries have been featured in top-tier journals such as PNAS, Cell Metabolism, and Molecular Psychiatry.

Profile

Scopus

🎓 Early Academic Pursuits

Baoman Li’s journey into the world of biomedical science began with a strong academic foundation. He pursued his Ph.D. in Medical Pharmacology at China Medical University, where he cultivated a keen interest in the intersection of neuroscience, pharmacology, and toxicology. His early research provided him with an in-depth understanding of neural mechanisms and laid the groundwork for his future innovations. Eager to expand his international experience, he furthered his postdoctoral research at the University of Rochester Medical Center (USA) from 2013 to 2014, where he deepened his expertise in neuropharmacological research.

🧪 Professional Endeavors

Currently serving as a Professor and Department Director at the Forensic Analytical Toxicology Department of China Medical University, Professor Li leads a dynamic team of researchers and scholars. His leadership has not only enhanced academic standards within the department but has also positioned it as a center of excellence in the field of neuroglial research and forensic toxicology. His multidisciplinary approach merges analytical science with neuroscience, significantly advancing our understanding of central nervous system (CNS) function and dysfunction.

🧠 Contributions and Research Focus

Professor Li’s research focuses on cutting-edge discoveries related to neural mechanisms, cerebrospinal fluid dynamics, and neuropsychiatric disorders. One of his landmark studies, published in PNAS (2024), identified ependymal cell-mediated cerebrospinal fluid transport from the CNS to peripheral organs, revealing a critical physiological communication pathway. In another pivotal contribution in Cell Metabolism (2025), he elucidated the role of the NE-FFA-Na⁺/K⁺-ATPase pathway in regulating neuronal hyperexcitability and behavioral arousal. Moreover, his groundbreaking development of a circadian disruption-induced manic mouse model for bipolar disorder research (published in Molecular Psychiatry, 2023) has provided a valuable tool for studying mood disorders and developing new therapeutic approaches.

📚 Academic Publications and Editorial Work

With an impressive academic portfolio, Professor Li has authored and edited three influential books centered on neuroglial science, expanding the literature in this specialized domain. His published works include notable titles with ISBNs: 978-7-117-34321-3, 978-3-030-77375-5, and 978-2-88963-497-2. These contributions serve as essential resources for both emerging and seasoned neuroscientists, offering detailed insights into glial biology, neurochemical interactions, and translational research.

🏅 Accolades and Recognition

Professor Li’s scholarly excellence is widely recognized, as reflected in his H-index of 34 and a total citation count of 3,530 according to Web of Science. His ability to consistently produce high-impact research has made him a respected voice in neuroscience and pharmacology. He has successfully led eight research projects funded by prestigious bodies such as the Natural Science Foundation of China and the Ministry of Education, while also currently heading two additional projects supported by the provincial science foundation.

🤝 Industry and Consultancy Impact

Beyond academic circles, Professor Li has extended his expertise into practical applications through four consultancy projects, bridging the gap between research and real-world forensic or pharmaceutical needs. His ability to translate complex neuropharmacological findings into actionable insights for the industry underscores his role as not only a theorist but also a problem-solver and innovator.

🔬 Legacy and Future Contributions

As a scientist, educator, and leader, Professor Baoman Li continues to shape the future of neuroscience and pharmacological toxicology. His ongoing research and collaborative efforts are expected to yield further breakthroughs in understanding brain-behavior relationships and disease mechanisms. With a legacy already marked by innovation and impact, his future contributions promise to enhance diagnostics, treatments, and preventive strategies for neurological and psychiatric disorders. His commitment to mentoring young scholars and editing academic literature ensures that his influence will resonate across generations of researchers to come.

Publication

  • Title: Cerebrospinal Fluid Enters Peripheral Organs by Spinal Nerves Supporting Brain–Body Volume Transmission
    Authors: Li, Baoman; Xia, Maosheng; Harkany, Tibor; Verkhratsky, Alexei N.
    Year: Not specified (likely 2024 or 2025)

 

  • Title: Anti-seizure effects of norepinephrine-induced free fatty acid release
    Authors: Li, Baoman; Sun, Qian; Ding, Fengfei; Smith, Nathan A.; Nedergaard, Maiken
    Year: 2025
    Journal: Cell Metabolism

 

  • Title: Major depressive disorder: hypothesis, mechanism, prevention and treatment
    Authors: Cui, Lulu; Li, Shu; Wang, Siman; Xia, Maosheng; Li, Baoman
    Year: Not specified (likely 2024 or 2025)
    Type: Review (Open access)

 

  • Title: The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs
    Authors: Li, Xinyu; Wang, Siman; Zhang, Dianjun; Xia, Maosheng; Li, Baoman
    Year: 2024
    Journal: Proceedings of the National Academy of Sciences of the USA (Open access)

 

  • Title: Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice
    Authors: Wang, Shuying; Yu, Xiaojin; Cheng, Lili; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Cell Death and Disease (Open access)

 

  • Title: Ketamine administration causes cognitive impairment by destroying the circulation function of the glymphatic system
    Authors: Wu, Xue; Wen, Gehua; Yan, Lei; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Biomedicine and Pharmacotherapy (Open access)

 

  • Title: Correction to: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology (Erratum, Open access)

 

  • Title: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology

 

  • Title: Trace metals and astrocytes physiology and pathophysiology
    Authors: Li, Baoman; Yu, Weiyang; Verkhratsky, Alexei N.
    Year: 2024
    Journal: Cell Calcium

 

Conclusion:

Dr. Baoman Li is a strong and deserving candidate for the Best Researcher Award. His innovative research, publication in high-impact journals, and interdisciplinary contributions demonstrate excellence and sustained scientific productivity. While he can enhance his visibility and further define his leadership role, his current achievements are more than sufficient to merit this prestigious recognition.

 

Haoqiang Sun | Systems Neuroscience | Best Researcher Award

Dr. Haoqiang Sun | Systems Neuroscience | Best Researcher Award

Dr. Haoqiang Sun, Xi’an Jiaotong University, School of Management, China.

Haoqiang Sun is an emerging scholar in Management Science and Engineering, currently pursuing his Ph.D. at Xi’an Jiaotong University, where he is exploring multimodal big data analysis and user-generated content. His academic journey began with a Bachelor’s degree in Information and Computing Science, followed by a Master’s in Resources and Environment. Throughout his studies, Haoqiang has demonstrated a keen interest in data analysis, which has led to his current focus on practical applications in tourism and business. In addition to his research, he serves as a teaching assistant, mentoring students in advanced statistical analysis. His work is funded by prominent national programs, highlighting his potential to make significant contributions to his field.

Profile

Google Scholar

Early Academic Pursuits 🎓

Haoqiang Sun’s academic journey began with a focus on Information and Computing Science, completing his Bachelor’s degree at Xi’an University of Science and Technology, where he achieved a GPA of 2.71/4.00 from 2016 to 2020. His early years as a student laid a strong foundation for his future research in management science and engineering, particularly in data analysis. During his time at Xi’an University, he honed his skills in data processing and computation, which would later shape his research trajectory. His academic curiosity and passion for problem-solving were evident as he progressed into his Master’s studies, earning an M.Sc. in Resources and Environment with a GPA of 3.07/4.00 from 2020 to 2023. These formative years provided him with a solid background in multidisciplinary studies, which were crucial in his later exploration of multimodal data analysis.

Academic Pursuits in Management Science and Engineering 📊

Currently, Haoqiang is a Ph.D. student at Xi’an Jiaotong University, specializing in Management Science and Engineering. Since September 2023, he has been working under the guidance of Professor Shaolong Sun, with an expected completion date of December 2026. His research interests focus on multimodal big data analysis and user-generated content, reflecting a deep interest in understanding the dynamics of digital data in real-world applications. Haoqiang’s academic performance is notable, with a GPA of 3.56/4.00, illustrating his dedication to mastering the complexities of management science. His ongoing research aims to bridge the gap between big data analytics and practical business applications, positioning him as a promising scholar in his field.

Professional Endeavors and Research Contributions 💼

Haoqiang Sun’s professional journey has been marked by his roles as both a researcher and a teaching assistant. As a research assistant at Xi’an Jiaotong University, he has been contributing to significant projects funded by both the National Key R&D Program for Young Scientists and the National Nature Science Foundation. His primary responsibilities involve literature reviews, data collection, and academic writing. These experiences allow him to explore cutting-edge research in multimodal big data analysis, particularly focusing on tourism-related data. Additionally, Haoqiang leads a research project, Multi-modal Data Mining and Analysis of Tourist Attractions (2025–2026), where he is tasked with applying data analytics to understand tourist demand at Xi’an’s popular tourist sites.

Teaching and Mentorship 🎓

In addition to his research, Haoqiang is also committed to the academic development of others. He serves as a full-time teaching assistant for the course Advanced Statistical Analysis at Xi’an Jiaotong University, a role he started in September 2024. As a teaching assistant, Haoqiang provides guidance on study strategies, addresses student queries, and helps foster a deeper understanding of statistical concepts. His work in this capacity reflects his passion for knowledge sharing and his dedication to helping fellow students navigate the complexities of advanced statistical methods, demonstrating his teaching aptitude and communication skills.

Research Focus and Innovation 🔍

Haoqiang’s research focuses on the intersection of multimodal big data analysis and user-generated content. His work is particularly relevant in today’s digital age, where vast amounts of data are produced by online users, and understanding these data flows can lead to meaningful insights for businesses and policymakers alike. His work in tourism, especially in analyzing tourist demand through multimodal data, demonstrates the practical applications of his research. By integrating data from multiple sources, including social media, reviews, and online platforms, Haoqiang seeks to optimize user experiences and improve decision-making processes in various sectors.

Accolades and Recognition 🏆

Despite being early in his academic career, Haoqiang has already earned recognition for his academic achievements. His research contributions, particularly in the realm of data analytics and management science, have positioned him as an emerging scholar with great potential. His supervisor, Professor Shaolong Sun, has commended his work for its rigor and innovation. Haoqiang’s research has been well-received in academic circles, and his involvement in prestigious projects funded by national scientific programs speaks to the quality and relevance of his work.

Future Contributions and Legacy 🌟

Looking ahead, Haoqiang Sun is poised to make significant contributions to the fields of data analysis and management science. His current research, which applies multimodal big data techniques to tourism and user-generated content, is just the beginning of what promises to be a fruitful academic career. Haoqiang’s work has the potential to influence not only the academic community but also industries like tourism, marketing, and data science, where insights into consumer behavior and user interactions are critical. As he continues to explore new methodologies and applications in data analytics, Haoqiang aims to leave a lasting legacy of innovation, bridging the gap between theory and practice in management science.

Publication

 

  • Experimental study on mechanical damage characteristics of water-bearing tar-rich coal under microwave radiation
    Authors: P Yang, P Shan, H Xu, J Chen, Z Li, H Sun
    Year: 2024

 

  • Numerical method for predicting and evaluating the stability of section coal pillars in underground longwall mining
    Authors: P Shan, H Sun, X Lai, J Dai, J Gao, P Yang, W Li, C Li, C Yan
    Year: 2022

 

  • Experiment on accurate identification of thermal image of coal-gangue mixture under a simulated dusky and wet condition
    Authors: SUNH SHAN Pengfei, LI Chenwei, LAI Xingping
    Year: 2024

 

  • Coal-rock interface perception and accurate recognition in heading face under coal dust environment based on machine vision
    Authors: Y ZHANG, L TONG, X LAI, S CAO, B YAN, Y LIU, H SUN, Y YANG, W HE
    Year: 2024

 

  • Evaluation of real-time perception of deformation state of host rocks in coal mine roadways in dusty environment
    Authors: P Shan, C Yan, X Lai, H Sun, C Li, X Chen
    Year: 2023

 

  • Let pictures speak: hotel selection-recommendation method with cognitive image attribute-enhanced knowledge graphs
    Authors: H Sun, H Xu, J Wu, S Sun, S Wang
    Year: 2024

 

  • Beyond Visual Appeal: The Impact of Multisensory Experience of Hotel Marketing and Review Images on Sales
    Authors: H Sun, H Xu, S Sun, H Li, S Wang
    Year: 2025

 

  • A research study of lightweight state perception algorithm based on improved YOLOv5s‐Tiny for fully mechanized top‐coal caving mining
    Authors: PF Shan, T Yang, XC Wu, HQ Sun
    Year: 2024

 

  • Mechanism of short-wall block backfill water-preserved mining based on water-conducting fractures development-heavy metal ions migration
    Authors: Y ZHANG, Y LIU, X LAI, T SONG, L ZHANG, H SUN, P WAN, R ZHAN
    Year: 2023

 

Conclusion

Haoqiang Sun’s academic and professional pursuits reflect his dedication to advancing the field of management science through the innovative use of big data analysis. With a strong foundation in both technical and applied research, he is well-positioned to impact industries like tourism, marketing, and business analytics. As he continues to develop his expertise, Haoqiang’s future contributions are expected to bridge the gap between theoretical research and practical applications, leaving a lasting influence on both academia and industry. His passion for research and teaching further ensures that his academic legacy will inspire future generations of scholars and professionals.

 

Atena Shojaie | Behavioral Neuroscience | Best Researcher Award

Ms. Atena Shojaie | Behavioral Neuroscience | Best Researcher Award

Ms. Atena Shojaie, Kerman university of medical sciences, Iran.

Atena Shojaie is a dedicated medical-surgical nursing professional with a Master’s degree from Kerman University of Medical Sciences. Her early academic journey was marked by a passion for integrating clinical care with research, particularly in neurology and rehabilitation. Over three years of working in critical care settings, including Neurology and ICU wards, she honed her clinical expertise while also serving as a valued clinical instructor. Her research focus on guided imagery as a therapeutic intervention for multiple sclerosis and MRI-induced anxiety has led to innovative practices currently in use at major hospitals. Atena’s academic contributions are beginning to gain recognition through citations and clinical adoption of her methods.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Atena Shojaie began her journey in the field of healthcare with a strong academic foundation, earning a bachelor’s degree in nursing followed by a Master of Science in Medical-Surgical Nursing from Kerman University of Medical Sciences. Her early academic interests revolved around holistic patient care and neuro-rehabilitation, which laid the groundwork for her later clinical and research endeavors. During her postgraduate studies, she demonstrated a deep commitment to understanding patient needs—especially those facing neurological challenges—while also refining her clinical skills in hospital environments.

🏥 Professional Endeavors

In the span of just three years, Atena accumulated extensive experience working in several critical hospital wards, including Neurology, Neurosurgery, and the Intensive Care Unit (ICU). Her hands-on experience with acute and chronic conditions shaped her clinical intuition and enhanced her ability to manage complex patient cases. Parallel to her clinical work, she embraced the role of a clinical instructor, mentoring nursing and emergency medical students with a balance of academic rigor and compassionate teaching. This dual role of caregiver and educator reflects her deep-seated dedication to both practice and pedagogy.

🔬 Contributions and Research Focus

Atena’s research primarily centers on the intersection of psychological interventions and physical rehabilitation, with a particular emphasis on multiple sclerosis (MS). Her master’s thesis, “The Effectiveness of Guided Imagery on Walking and Balance Dysfunction in Patients With Multiple Sclerosis,” stands as a cornerstone of her academic work. The project demonstrated measurable improvements in gait and balance among MS patients and has since influenced ongoing clinical practices. Additionally, she completed a significant study on the “Anxiety of Patients Undergoing Magnetic Resonance Imaging (MRI),” showing how guided imagery can alleviate pre-procedure stress—further reflecting her commitment to patient-centered innovations.

🧠 Innovations in Mental Imagery

Atena Shojaie has been instrumental in translating academic research into practical tools for patient care. One of her notable innovations includes the creation of a guided imagery audio file, which is now regularly used in two major healthcare centers—Bahonar Hospital’s MRI department and Shafa Hospital’s MS Clinic. This therapeutic tool has not only improved the mental well-being of patients but also contributed to smoother clinical workflows, particularly in high-anxiety environments like radiology units.

📈 Impact and Influence

Although still early in her research career, Atena’s work has begun to gain scholarly recognition. With a citation index that includes three citations and an h-index of 1, her research is already laying the foundation for future studies in neuro-nursing and psychological rehabilitation. Her work continues to resonate with clinical teams and academics alike, especially those focused on non-pharmacological interventions for neurological conditions.

🏅 Accolades and Recognition

Atena’s clinical and research activities have earned her respect among her peers and mentors at Kerman University of Medical Sciences. While formal awards may still be on the horizon, her true recognition lies in the adoption of her guided imagery methods by major hospitals—an endorsement of both her scientific rigor and clinical insight. Her role as a trusted clinical instructor further affirms her reputation as a knowledgeable and compassionate professional.

🌟 Legacy and Future Contributions

With a solid foundation in research and hands-on care, Atena Shojaie is poised to make enduring contributions to the field of neuro-rehabilitative nursing. Her vision includes expanding the use of therapeutic mental imagery in broader hospital settings and conducting multi-center studies to further validate its effectiveness. As she continues her academic and clinical journey, her legacy will likely be defined by a thoughtful fusion of science, compassion, and innovation—paving the way for future advancements in holistic patient care.

Publication

 

  • Anxiety of Patients Undergoing Magnetic Resonance Imaging (MRI): The Effectiveness of Guided Mental Imagery
    Authors: A. Shojaie, H. Amiri, T. Dehesh, B. Bagherian
    Year: 2024

 

  • The Effectiveness of Guided Imagery on Walking and Balance Dysfunction in Patients With Multiple Sclerosis: A Randomized Controlled Trial
    Authors: B.B. Atena Shojaie, Hoda Kamali, Monir Sadat Nematollahi, Zahra Imani Goghary
    Year: 2025

 

✅ Conclusion

Atena Shojaie exemplifies the new generation of nurse-researchers who bridge the gap between evidence-based practice and compassionate patient care. Her work in guided mental imagery not only addresses physical dysfunction but also supports patients’ emotional and psychological needs. As she continues to expand her research and clinical impact, Atena is well-positioned to influence future standards in neuro-nursing and non-pharmacological therapy. Her legacy will likely be defined by innovation, empathy, and a relentless pursuit of better outcomes for patients with neurological conditions.

Takeshi Sakurai | Neuroanatomy | Best Researcher Award

Prof. Dr. Takeshi Sakurai | Neuroanatomy | Best Researcher Award

Prof. Dr. Takeshi Sakurai, University of Tsukuba, Japan.

Takeshi Sakurai, M.D., Ph.D., is a distinguished academic whose career spans across key positions in neuroscience, pharmacology, and integrative sleep medicine. After earning his M.D. and Ph.D. from the University of Tsukuba, he embarked on a journey of groundbreaking research, primarily focusing on neurotransmission and sleep regulation. Sakurai’s postdoctoral work in prestigious institutions, coupled with his leadership of major projects like the Yanagisawa Orphan Receptor Project, established him as a leader in molecular neuroscience. Over the years, he has earned recognition through accolades and significant academic positions, including his current role as Professor and Vice Director at the University of Tsukuba’s International Institute for Integrative Sleep Medicine. His research continues to shape the understanding of sleep and brain function, while his influence extends to mentoring the next generation of scientists.

Profile

Google Scholar

Early Academic Pursuits 📚


Takeshi Sakurai’s academic journey began with his medical studies at the University of Tsukuba, where he earned his M.D. in 1989. During his early years at the university, he developed a keen interest in the molecular mechanisms of biological systems. This curiosity led him to pursue a Ph.D. in medicine, which he completed in 1993. His doctoral research focused on the cloning of a cDNA encoding a non-isopetide-selective subtype of the endothelin receptor, a project that was published in Nature in 1990, marking the beginning of his significant contributions to molecular pharmacology.

Professional Endeavors 👨‍⚕️


Following his Ph.D., Sakurai embarked on a promising career in academic research, starting as a postdoctoral fellow at the Institute of Basic Medical Sciences in 1993. His career rapidly advanced as he took on various roles, including Assistant Professor at the same institute. During his tenure, he also worked as a postdoctoral fellow at the prestigious Howard Hughes Medical Institute at the University of Texas Southwestern Medical Center in Dallas from 1995 to 1996. These experiences broadened his expertise in pharmacology and molecular neuroscience, laying the foundation for his future academic leadership roles. By 1999, he became an Associate Professor at the University of Tsukuba and contributed significantly to the university’s research landscape.

Contributions and Research Focus 🧬


Sakurai’s research is primarily centered around molecular neuroscience, pharmacology, and integrative physiology. His work has been pivotal in advancing the understanding of biological systems and their regulation at the molecular level. Notably, his leadership of the Yanagisawa Orphan Receptor Project under the Exploratory Research for Advanced Technology (ERATO) of the Japan Science and Technology Corporation highlights his role in pioneering research on orphan receptors. His continued focus on the mechanisms of neurotransmission and their involvement in sleep regulation has earned him a place as a leading researcher in the field of integrative sleep medicine.

Accolades and Recognition 🏆


Throughout his career, Sakurai has earned widespread recognition for his contributions to medicine and neuroscience. His groundbreaking work on neurotransmitter systems and sleep regulation has led to his appointment as a Professor and Vice Director at the University of Tsukuba’s International Institute for Integrative Sleep Medicine. His research has not only shaped the scientific community’s understanding of brain function but also garnered him numerous accolades, further cementing his reputation as a thought leader in the field.

Impact and Influence 🌍


Sakurai’s impact extends far beyond his own research. As a professor, he has mentored countless students and researchers who have gone on to make their own significant contributions in the fields of neuroscience and pharmacology. His interdisciplinary approach to sleep medicine has influenced research on neurodegenerative diseases, mental health, and drug development. The work he has pioneered in molecular neuroscience has also paved the way for advances in treatment approaches for disorders related to sleep and neurotransmission, offering hope for improved therapeutic interventions.

Legacy and Future Contributions 🔬


Looking ahead, Sakurai’s legacy in neuroscience and integrative sleep medicine is poised to continue influencing both academic research and clinical practice. His innovative research on sleep regulation and the molecular mechanisms underpinning brain function will undoubtedly remain foundational in the future of both basic and applied medical sciences. As he continues his work at the University of Tsukuba, Sakurai’s future contributions will likely expand our understanding of the brain’s intricate systems and their broader implications for human health. His career exemplifies a dedication to advancing science, and his ongoing research promises to address critical challenges in medicine and health.

Academic Leadership and Mentorship 🎓


In addition to his personal research achievements, Sakurai’s role in academic leadership cannot be understated. As a professor at the University of Tsukuba, he has played a pivotal role in shaping the institution’s research direction and academic programs, particularly within the fields of integrative physiology and sleep medicine. His influence extends through the mentorship of students, guiding the next generation of researchers who will continue to build on his work. Sakurai’s commitment to education and his support for innovative research initiatives are key to his lasting impact on the academic and medical communities.

Publication

  • Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior
    Authors: T Sakurai, A Amemiya, M Ishii, I Matsuzaki, RM Chemelli, H Tanaka, …
    Year: 1998

 

  • Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor
    Authors: T Sakurai, M Yanagisawa, Y Takuwat, H Miyazakit, S Kimura, K Goto, …
    Year: 1990

 

  • Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity
    Authors: J Hara, CT Beuckmann, T Nambu, JT Willie, RM Chemelli, CM Sinton, …
    Year: 2001

 

  • Autism genome-wide copy number variation reveals ubiquitin and neuronal genes
    Authors: JT Glessner, K Wang, G Cai, O Korvatska, CE Kim, S Wood, H Zhang, …
    Year: 2009

 

  • The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness
    Author: T Sakurai
    Year: 2007

 

  • Distribution of orexin neurons in the adult rat brain
    Authors: T Nambu, T Sakurai, K Mizukami, Y Hosoya, M Yanagisawa, K Goto
    Year: 1999

 

  • Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems
    Authors: Y Date, Y Ueta, H Yamashita, H Yamaguchi, S Matsukura, K Kangawa, …
    Year: 1999

 

  • Hypothalamic orexin neurons regulate arousal according to energy balance in mice
    Authors: A Yamanaka, CT Beuckmann, JT Willie, J Hara, N Tsujino, M Mieda, …
    Year: 2003

 

  • Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method
    Authors: Y Yamada, N Yoshimura, T Sakurai
    Year: 1968

 

  • Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area
    Authors: CF Elias, CB Saper, E Maratos‐Flier, NA Tritos, C Lee, J Kelly, JB Tatro, …
    Year: 1998

 

Conclusion


Takeshi Sakurai’s work has profoundly impacted the fields of neuroscience, pharmacology, and sleep medicine. His contributions have not only advanced scientific understanding but have also paved the way for practical applications in medical therapies. Through his leadership and mentorship, Sakurai’s legacy is set to endure, with his future research promising further advancements in understanding the complexities of the brain and its regulation. His dedication to advancing both science and education ensures that his influence will continue to resonate in academic and clinical circles for years to come.

 

Zhong Suyu | Neuroimaging | Best Researcher Award

Assoc. Prof. Dr. Zhong Suyu | Neuroimaging | Best Researcher Award

Assoc. Prof. Dr. Zhong Suyu, Beijing University of Posts and Telecommunications, China.

Zhong Suyu is a distinguished scholar at the intersection of artificial intelligence and cognitive neuroscience. With an academic foundation in biomedical engineering and a Ph.D. in Cognitive Neuroscience from Beijing Normal University, they have dedicated their career to exploring AI-driven brain research. Their postdoctoral work and current role as an Associate Professor at the Beijing University of Posts and Telecommunications have positioned them as a leading expert in brain-computer interfaces, neural signal processing, and machine learning applications in cognitive studies. Through groundbreaking research, impactful publications, and mentorship, they continue to shape the future of AI-integrated neuroscience.

Profile

Google Scholar

Early Academic Pursuits 🎓

Zhong Suyu’s academic journey began with a deep-rooted passion for the intersection of medicine, engineering, and neuroscience. They earned a Bachelor’s degree in Biomedical Engineering from Capital Medical University in 2006, laying the groundwork for their future research. Eager to expand their expertise, they pursued a Master’s degree at Beijing University of Aeronautics and Astronautics, delving further into biomedical engineering and honing their skills in medical technology. The pinnacle of their academic training came with a Ph.D. in Cognitive Neuroscience from Beijing Normal University in 2016, where they explored the intricate relationship between human cognition and artificial intelligence.

Professional Endeavors 🏛️

Following the completion of their doctorate, Zhong Suyu embarked on an enriching postdoctoral journey at Beijing Normal University from 2016 to 2020. This period was instrumental in refining their research focus and contributing to groundbreaking studies. Their commitment to academic excellence led them to Beijing University of Posts and Telecommunications, where they assumed the role of Associate Professor in the School of Artificial Intelligence in 2023. In this capacity, they have been at the forefront of AI-driven neuroscience, guiding students and conducting pioneering research in the field.

Contributions and Research Focus 🔬

At the heart of Zhong Suyu’s work lies an innovative approach to integrating artificial intelligence with cognitive neuroscience. Their research explores brain-computer interfaces, neural signal processing, and machine learning applications in cognitive studies. By bridging AI with human cognition, they aim to unlock new possibilities in medical diagnostics, brain function analysis, and human-machine interaction. Their interdisciplinary contributions have positioned them as a thought leader in the evolution of AI-driven neurological studies.

Accolades and Recognition 🏆

Zhong Suyu’s dedication to research and education has earned them notable recognition in the scientific community. Their work has been published in prestigious journals, and they have been invited to speak at international conferences on artificial intelligence and neuroscience. Whether through peer-reviewed studies or academic symposiums, their influence continues to grow, marking them as a distinguished scholar in their domain.

Impact and Influence 🌍

Beyond academic circles, Zhong Suyu’s research has profound real-world applications. Their insights into AI-powered cognitive analysis have the potential to revolutionize mental health assessments, neurological disorder treatments, and adaptive learning systems. As an educator, they inspire a new generation of researchers, fostering curiosity and innovation among students eager to explore the vast possibilities of AI and neuroscience.

Legacy and Future Contributions 🚀

With an unwavering commitment to advancing artificial intelligence and cognitive science, Zhong Suyu’s legacy is one of transformation and discovery. As they continue to push the boundaries of human-machine integration, their future research is poised to shape the next era of intelligent systems. Through continued collaborations, technological advancements, and mentorship, they remain a driving force in redefining the synergy between artificial intelligence and the human brain.

Publication

  1. PANDA: a pipeline toolbox for analyzing brain diffusion images
    Z Cui, S Zhong, P Xu, Y He, G Gong2013

 

  1. Developmental changes in topological asymmetry between hemispheric brain white matter networks from adolescence to young adulthood
    S Zhong, Y He, H Shu, G Gong2017

 

  1. The abnormality of topological asymmetry between hemispheric brain white matter networks in Alzheimer’s disease and mild cognitive impairment
    C Yang, S Zhong, X Zhou, L Wei, L Wang, S Nie2017

 

  1. A significant risk factor for poststroke depression: the depression-related subnetwork
    S Yang, P Hua, X Shang, Z Cui, S Zhong, G Gong, GW Humphreys2015

 

  1. Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences
    S Zhong, Y He, G Gong2015

 

  1. The white matter structural network underlying human tool use and tool understanding
    Y Bi, Z Han, S Zhong, Y Ma, G Gong, R Huang, L Song, Y Fang, Y He2015

 

  1. Deficiency of brain structural sub‐network underlying post‐ischaemic stroke apathy
    S Yang, P Hua, X Shang, Z Cui, S Zhong, G Gong, G William Humphreys2015

 

  1. The semantic anatomical network: Evidence from healthy and brain‐damaged patient populations
    Y Fang, Z Han, S Zhong, G Gong, L Song, F Liu, R Huang, X Du, R Sun2015

 

Conclusion 🌟

Zhong Suyu’s journey is a testament to the power of interdisciplinary research in advancing both artificial intelligence and human cognition. Their work not only contributes to academic knowledge but also has the potential to revolutionize medical diagnostics, mental health assessments, and human-machine interactions. As they continue to push the frontiers of AI and neuroscience, their legacy will inspire future researchers and redefine the possibilities of intelligent systems in cognitive sciences.

Jun Xia | Central Nerous System | Best Scholar Award

Dr. Jun Xia | Central Nerous System| Best Scholar Award

Dr. Jun Xia,  Shenzhen Second People’s Hospital, China.

Dr. Jun Xia, Chief Physician and Deputy Director of the Department of Medical Imaging at Shenzhen Second People’s Hospital, is a distinguished expert with over 30 years of experience in medical imaging. His work focuses on neurological diagnostics, functional imaging, AI-assisted diagnostics, and rare disease consultations. Dr. Xia has published 52 journal articles, including 39 SCI papers with a cumulative impact factor exceeding 100, and authored six books. He holds three patents and has led 15 research projects, including collaborations on pioneering AI-based diagnostic tools. His expertise is recognized globally through editorial appointments, conference presentations, and professional memberships.

 

profile

Scholar

🎓 Academic and Professional Background

Dr. Jun Xia, a Ph.D. holder and medical imaging expert, boasts 30+ years of experience in neurological diagnostics, functional imaging, AI-assisted diagnostics, and rare disease consultations.  He has published 39 SCI papers with an impact factor exceeding 100, reviewed national research funds, and presented at top-tier conferences such as RSNA and ECR.

💡 Research and Innovations

Completed/Ongoing Research Projects: 15. Citation Index: Not specified. Consultancy/Industry Projects: Not specified.Books Published (ISBN): 6.ISBN: 9787117274296, 9787117235983, 9787535767066, 9787535767080, 9787523513552, 9787117331340.Patents Published/Under Process: 3.Journals Published (SCI, Scopus, etc.): 52

Representative Papers:

European Radiology (2024): Feasibility of CT-based synthetic brain T1-weighted MRI.Information Fusion (2022): Explainable AI via multi-modal and multi-centre data fusion.European Radiology (2022): MRI neuroimaging for prognosis in hydrocephalus patients post-shunt surgery.Neural Computing & Applications (2022): AI-based e-Diagnosis for ventricular volume measurement.Quantitative Imaging in Medicine and Surgery (2022): MRI synthesis from CT using CNNs with contextual loss.

🌐 Professional Memberships

Member, Head and Neck Committee, Radiology Branch, Chinese Medical Association.Member, Neuroregeneration and Repair Professional Committee, Chinese Research Hospital AssociationMember, Magnetic Resonance Application Professional Committee, China Medical EquipmentAssociation.Member, Neurology Group, Radiology Branch, Guangdong Medical AssociationMember, Radiology Branch, Shenzhen Medical Association

🏆 Contributions

Dr. Jun Xia has made exceptional contributions in medical imaging, excelling in advanced diagnostic techniques for CNS, musculoskeletal, and abdominal diseases. His expertise in neuroimaging and AI-assisted diagnostics has led to groundbreaking solutions in patient care. With numerous impactful publications and clinical innovations, he continues to advance the field of medical imaging.

📚 Publications

  • Artificial intelligence distinguishes COVID-19 from community-acquired pneumonia on chest CT
    Authors: L Li, L Qin, Z Xu, Y Yin, X Wang, B Kong, J Bai, Y Lu, Z Fang, Q Song, …
    Year: 2020

 

  • Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy
    Authors: L Li, L Qin, Z Xu, Y Yin, X Wang, B Kong, J Bai, Y Lu, Z Fang, Q Song, …
    Year: 2020

 

  • Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond
    Authors: G Yang, Q Ye, J Xia
    Year: 2022

 

  • Weakly supervised deep learning for COVID-19 infection detection and classification from CT images
    Authors: S Hu, Y Gao, Z Niu, Y Jiang, L Li, X Xiao, M Wang, EF Fang, …
    Year: 2020

 

  • Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network
    Authors: H Ye, F Gao, Y Yin, D Guo, P Zhao, Y Lu, X Wang, J Bai, K Cao, Q Song, …
    Year: 2019

 

  • A single-center, retrospective study of COVID-19 features in children: a descriptive investigation
    Authors: H Ma, J Hu, J Tian, X Zhou, H Li, MT Laws, LD Wesemann, B Zhu, …
    Year: 2020

 

  • Swin transformer for fast MRI
    Authors: J Huang, Y Fang, Y Wu, H Wu, Z Gao, Y Li, J Del Ser, J Xia, G Yang
    Year: 2022

 

  • Explainable AI for COVID-19 CT classifiers: an initial comparison study
    Authors: Q Ye, J Xia, G Yang
    Year: 2021

 

  • Radiomics nomogram building from multiparametric MRI to predict grade in patients with glioma: a cohort study
    Authors: Q Wang, Q Li, R Mi, H Ye, H Zhang, B Chen, Y Li, G Huang, J Xia
    Year: 2019

 

  • Learning tree-structured representation for 3D coronary artery segmentation
    Authors: B Kong, X Wang, J Bai, Y Lu, F Gao, K Cao, J Xia, Q Song, Y Yin
    Year: 2020

 

Conclusion

Dr. Jun Xia’s contributions to medical imaging have significantly advanced the field, particularly in AI-driven diagnostics and functional neuroimaging. His innovative research, extensive publications, and clinical applications underscore his status as a leader in the domain. With a proven track record of excellence and groundbreaking work, Dr. Xia exemplifies the qualities of a visionary researcher and a transformative figure in medical imaging.