Zhou Yu | Behavioral Neuroscience | Best Researcher Award

Dr. Zhou Yu | Behavioral Neuroscience | Best Researcher Award

Dr. Yu Zhou is a postdoctoral researcher at Army Engineering University, specializing in the intersection of neuroscience, computer vision, and target detection. His research primarily focuses on deceptive visual design for both human and machine perception, exploring how visual stimuli can influence detection, recognition, and cognitive processing. Zhou has conducted pioneering studies on camouflage and optical deception, utilizing EEG-based brain functional network analysis to evaluate target visibility and cognitive responses. His work integrates principles from weapon science, biomedical engineering, and computer science to develop comprehensive models of visual perception and deception. Representative publications include investigations into neural responses to camouflage targets with varying exposure signs, the impact of color differences on brain activation patterns, and feasibility assessments of optical camouflage effects. Through these studies, he contributes to a deeper understanding of how visual designs can manipulate human attention and computer vision systems, providing actionable insights for defense technology applications. Zhou’s research emphasizes rigorous quantitative evaluation methods, leveraging neurophysiological data to inform the design of effective deceptive visual patterns. With an h-index of 2 and multiple citations, his work demonstrates a growing influence in fields spanning neuroscience-informed computer vision, perceptual deception, and applied optical camouflage.

Profiles: Scopus | Reasearch Gate

Featured publication

Author(s). (2024). Neural responses to camouflage targets with different exposure signs based on EEG. Neuropsychologia.

Hiroshi Nagase | Neuropharmacology | Best Researcher Award

Prof. Hiroshi Nagase | Neuropharmacology | Best Researcher Award

Prof. Hiroshi Nagase | University of Tsukuba | Japan

Prof. Hiroshi Nagase is a distinguished Japanese scientist recognized for his pioneering contributions to medicinal chemistry and drug discovery. He earned his B.S., M.S., and Ph.D. degrees in Chemistry from Nagoya University, Japan, and later served as a Visiting Scientist at the University of Minnesota’s Department of Medicinal Chemistry. Dr. Nagase began his professional career at Toray Industries Inc., where he advanced from Researcher to Director in the Basic Research Laboratories. He later joined Kitasato University’s School of Pharmacy as a Professor and subsequently served as a Principal Investigator and Professor at the International Institute for Integrative Sleep Medicine (IIIS) under the World Premier International Research Center Initiative at the University of Tsukuba, where he now holds the title of Professor Emeritus. His academic and research influence extended through adjunct professorships at the University of Tokyo, the University of Nagasaki, Toyohashi Polytechnic College, and Nagoya University. Dr. Nagase has authored 39 scientific documents, which have collectively garnered 279 citations from 189 sources, reflecting his substantial impact on the field. With an h-index of 10, his research continues to inspire advancements in medicinal chemistry, neuropharmacology, and therapeutic innovation.

Profiles: Scopus | Research Gate

Featured Publication

Nagase, H. (2025). Development of novel bioactive alkaloids based on specific reactions of the 4,5-epoxymorphinan framework. Synlett.

[Authors not listed]. (2025). Delta opioid receptor agonists activate PI3K–mTORC1 signaling in parvalbumin-positive interneurons in mouse infralimbic prefrontal cortex to exert acute antidepressant-like effects. Molecular Psychiatry.

Liliana Elena Weimer | Clinical Neuroscience | Best Researcher Award

Dr. Liliana Elena Weimer | Clinical Neuroscience | Best Researcher Award

Dr.  Liliana Elena Weimer, Center For Global Health Istituto Superiore di Sanita’ Rome, Italy.

Dr. Liliana Elena Weimer is a highly accomplished physician and clinical researcher , where she has risen to the prestigious Level II “First Researcher” position. Her professional focus lies in clinical trials for infectious diseases, particularly HIV and Hepatitis C. She has played a critical role in major national and international research efforts, including collaborations with the U.S. Clinical Trials Group and leadership of the large-scale PITER cohort involving 25,000 HCV patients. She is known not only for her scientific contributions but also for her humanitarian efforts during the COVID-19 emergency. Among her recognitions is the 1st Prize at the 2019 International Congress on Hepatitis C in Seville. Throughout her career, she has exemplified scientific integrity, dedication, and service to public health.

Profile

Google Scholar

🎓 Early Academic Pursuits

Born on December 19, 1965, in Buenos Aires to Italian parents, Dr. Liliana Elena Weimer embraced her dual heritage and committed herself to a life in medicine and research. With Italian citizenship and deep academic determination, she laid the groundwork for her career by studying medicine, ultimately finding her professional home in Italy. Her academic path, though not fully detailed, clearly led her toward a focus on clinical medicine and infectious diseases, with her earliest professional roles marking the beginning of a lifelong engagement in public health and biomedical research. Her intellectual dedication and international roots later became an asset in global research collaborations.

🩺 Professional Endeavors

Dr. Weimer’s distinguished career spans over three decades at the Italian National Institute of Health (ISS), beginning in 1985. Starting as a dedicated clinical physician, she ascended to Level III researcher status by 1990 and continued to grow into higher ranks, culminating in her success in the national Art. 15 competition for the Level II “First Researcher” role in 2022, officially backdated to 2021. Throughout her tenure at ISS, she became a central figure within the Global Health Center in Rome. Known for her tireless commitment, she often described her career not simply as a job but as a “mission,” emphasizing both her personal and professional passion for making a difference in human health.

🧪 Contributions and Research Focus

Specializing in clinical trials, Dr. Weimer has coordinated and participated in numerous groundbreaking studies in HIV and Hepatitis C (HCV). Since the early 1990s, she has collaborated closely with renowned figures such as Prof. Giovanni Rossi, Prof. Stefano Vella, and Prof. Gianni Rezza, contributing to some of the most pivotal HIV antiretroviral therapy trials in history. Her research efforts extended to co-leading and organizing both national and international multicenter clinical trials. Notably, she has been at the forefront of the PITER study, a major nationwide cohort that follows 25,000 patients undergoing HCV treatment—one of the most comprehensive initiatives in Italy in the fight against hepatitis.

🌍 Global Collaborations and Humanitarian Engagement

Her impact extends beyond Italy, thanks to her active involvement with the U.S.-based American Clinical Trials Group on HIV studies. These collaborations have enhanced international understanding and treatment of HIV/AIDS. In addition to her clinical and research commitments, Dr. Weimer also devoted herself to frontline service during the COVID-19 pandemic. Volunteering both with the Civil Protection unit and at Bambino Gesù Children’s Hospital, she demonstrated profound humanitarian values. Her presence during a critical time underscored her belief in serving communities not just from behind a lab desk but also on the ground, directly supporting patients and health systems under strain.

🏅 Accolades and Recognition

Dr. Weimer’s work has been acknowledged at both national and international levels. One of the most prominent recognitions she received was the 1st Prize at the International Congress on Hepatitis C held in Seville in November 2019, a testament to her excellence and influence in the field of infectious disease research. Her achievements are not only measured in accolades but also in the tangible difference her work has made in advancing therapy options and clinical management of chronic viral diseases. Her rise within the ISS and the trust placed in her leadership of major research projects further affirm her standing within the scientific community.

💡 Impact and Influence

Over the course of her extensive career, Dr. Weimer has significantly shaped clinical research strategies in Italy, especially regarding chronic viral infections. Her coordination of thousands of patient cases within structured clinical trials has informed policy decisions and improved treatment protocols nationwide. Her presence at the ISS has also influenced future generations of researchers and clinicians, many of whom benefited from her mentorship, leadership, and example of scientific integrity. Through her rigorous methods and patient-focused approach, she has played a key role in Italy’s standing as a leader in global health research, especially in relation to HIV and HCV.

🔬 Legacy and Future Contributions

Looking forward, Dr. Weimer’s contributions will continue to echo through the fields of virology and clinical medicine. Her involvement in the PITER cohort and other studies has laid down essential groundwork for long-term epidemiological surveillance and patient care strategies. With her appointment as First Researcher, she enters a new chapter of leadership, likely to drive more innovative, patient-centered research initiatives in global health. Her legacy lies not only in her publications or awards but also in the thousands of lives improved by the treatments she helped to test, refine, and implement. The combination of scientific rigor and heartfelt service defines her enduring contribution to modern medicine.

Publication

  • Outcome of sustained virological responders with histologically advanced chronic hepatitis C – TR Morgan, MG Ghany, HY Kim, KK Snow, ML Shiffman, JL De Santo, … – 2010

 

  • Clinical, virologic, histologic, and biochemical outcomes after successful HCV therapy: a 5‐year follow‐up of 150 patients – SL George, BR Bacon, EM Brunt, KL Mihindukulasuriya, J Hoffmann, … – 2009

 

  • Safety and efficacy of simeprevir/sofosbuvir in hepatitis C–infected patients with compensated and decompensated cirrhosis – V Saxena, L Nyberg, M Pauly, A Dasgupta, A Nyberg, B Piasecki, … – 2015

 

  • Slow human immunodeficiency virus type 1 evolution in viral reservoirs in infants treated with effective antiretroviral therapy – D Persaud, SC Ray, J Kajdas, A Ahonkhai, GK Siberry, K Ferguson, … – 2007

 

  • Evaluation of proton pump inhibitor use on treatment outcomes with ledipasvir and sofosbuvir in a real‐world cohort study – EB Tapper, BR Bacon, MP Curry, DT Dieterich, SL Flamm, LE Guest, … – 2016

 

  • Microbial translocation is associated with residual viral replication in HAART-treated HIV+ subjects with< 50 copies/ml HIV-1 RNA – S Baroncelli, CM Galluzzo, MF Pirillo, MG Mancini, LE Weimer, … – 2009

 

  • Predictors of failure with high-flow nasal oxygen therapy in COVID-19 patients with acute respiratory failure: a multicenter observational study – R Mellado-Artigas, LE Mujica, ML Ruiz, BL Ferreyro, F Angriman, E Arruti, … – 2021

 

  • A randomized, double-blind trial on the use of a triple combination including nevirapine, a nonnucleoside reverse transcriptase HIV inhibitor, in antiretroviral-naive patients – M Floridia, R Bucciardini, D Ricciardulli, V Fragola, MF Pirillo, LE Weimer, … – 1999

 

  • Modeling cost‐effectiveness and health gains of a “universal” versus “prioritized” hepatitis C virus treatment policy in a real‐life cohort – LA Kondili, F Romano, FR Rolli, M Ruggeri, S Rosato, MR Brunetto, … – 2017

 

  • Real-life data on potential drug-drug interactions in patients with chronic hepatitis C viral infection undergoing antiviral therapy with interferon-free DAAs in the PITER network – LA Kondili, GB Gaeta, D Ieluzzi, AL Zignego, M Monti, A Gori, A Soria, … – 2017

 

🏁 Conclusion

Dr. Weimer stands as a distinguished figure in the field of global health research, with deep expertise in clinical trials and infectious diseases. Her legacy is marked by landmark contributions to HIV and HCV treatment protocols, influential collaborations, and compassionate public service. Her ongoing work continues to shape public health policy and medical research in Italy and beyond. As she advances in her leadership role at the ISS, her experience, insight, and dedication will remain vital to future innovations in clinical research and global health.

Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li, China Medical University,  China.

Professor Baoman Li stands at the forefront of contemporary neuroscience and pharmacology, merging deep academic knowledge with impactful translational research. From his foundational training at China Medical University to his postdoctoral work in the United States, he has consistently demonstrated excellence in exploring the physiological and molecular mechanisms of the central nervous system. Currently a Professor and Department Director, his work has revealed novel insights into cerebrospinal fluid transport, neuronal excitability regulation, and bipolar disorder modeling. These discoveries have been featured in top-tier journals such as PNAS, Cell Metabolism, and Molecular Psychiatry.

Profile

Scopus

🎓 Early Academic Pursuits

Baoman Li’s journey into the world of biomedical science began with a strong academic foundation. He pursued his Ph.D. in Medical Pharmacology at China Medical University, where he cultivated a keen interest in the intersection of neuroscience, pharmacology, and toxicology. His early research provided him with an in-depth understanding of neural mechanisms and laid the groundwork for his future innovations. Eager to expand his international experience, he furthered his postdoctoral research at the University of Rochester Medical Center (USA) from 2013 to 2014, where he deepened his expertise in neuropharmacological research.

🧪 Professional Endeavors

Currently serving as a Professor and Department Director at the Forensic Analytical Toxicology Department of China Medical University, Professor Li leads a dynamic team of researchers and scholars. His leadership has not only enhanced academic standards within the department but has also positioned it as a center of excellence in the field of neuroglial research and forensic toxicology. His multidisciplinary approach merges analytical science with neuroscience, significantly advancing our understanding of central nervous system (CNS) function and dysfunction.

🧠 Contributions and Research Focus

Professor Li’s research focuses on cutting-edge discoveries related to neural mechanisms, cerebrospinal fluid dynamics, and neuropsychiatric disorders. One of his landmark studies, published in PNAS (2024), identified ependymal cell-mediated cerebrospinal fluid transport from the CNS to peripheral organs, revealing a critical physiological communication pathway. In another pivotal contribution in Cell Metabolism (2025), he elucidated the role of the NE-FFA-Na⁺/K⁺-ATPase pathway in regulating neuronal hyperexcitability and behavioral arousal. Moreover, his groundbreaking development of a circadian disruption-induced manic mouse model for bipolar disorder research (published in Molecular Psychiatry, 2023) has provided a valuable tool for studying mood disorders and developing new therapeutic approaches.

📚 Academic Publications and Editorial Work

With an impressive academic portfolio, Professor Li has authored and edited three influential books centered on neuroglial science, expanding the literature in this specialized domain. His published works include notable titles with ISBNs: 978-7-117-34321-3, 978-3-030-77375-5, and 978-2-88963-497-2. These contributions serve as essential resources for both emerging and seasoned neuroscientists, offering detailed insights into glial biology, neurochemical interactions, and translational research.

🏅 Accolades and Recognition

Professor Li’s scholarly excellence is widely recognized, as reflected in his H-index of 34 and a total citation count of 3,530 according to Web of Science. His ability to consistently produce high-impact research has made him a respected voice in neuroscience and pharmacology. He has successfully led eight research projects funded by prestigious bodies such as the Natural Science Foundation of China and the Ministry of Education, while also currently heading two additional projects supported by the provincial science foundation.

🤝 Industry and Consultancy Impact

Beyond academic circles, Professor Li has extended his expertise into practical applications through four consultancy projects, bridging the gap between research and real-world forensic or pharmaceutical needs. His ability to translate complex neuropharmacological findings into actionable insights for the industry underscores his role as not only a theorist but also a problem-solver and innovator.

🔬 Legacy and Future Contributions

As a scientist, educator, and leader, Professor Baoman Li continues to shape the future of neuroscience and pharmacological toxicology. His ongoing research and collaborative efforts are expected to yield further breakthroughs in understanding brain-behavior relationships and disease mechanisms. With a legacy already marked by innovation and impact, his future contributions promise to enhance diagnostics, treatments, and preventive strategies for neurological and psychiatric disorders. His commitment to mentoring young scholars and editing academic literature ensures that his influence will resonate across generations of researchers to come.

Publication

  • Title: Cerebrospinal Fluid Enters Peripheral Organs by Spinal Nerves Supporting Brain–Body Volume Transmission
    Authors: Li, Baoman; Xia, Maosheng; Harkany, Tibor; Verkhratsky, Alexei N.
    Year: Not specified (likely 2024 or 2025)

 

  • Title: Anti-seizure effects of norepinephrine-induced free fatty acid release
    Authors: Li, Baoman; Sun, Qian; Ding, Fengfei; Smith, Nathan A.; Nedergaard, Maiken
    Year: 2025
    Journal: Cell Metabolism

 

  • Title: Major depressive disorder: hypothesis, mechanism, prevention and treatment
    Authors: Cui, Lulu; Li, Shu; Wang, Siman; Xia, Maosheng; Li, Baoman
    Year: Not specified (likely 2024 or 2025)
    Type: Review (Open access)

 

  • Title: The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs
    Authors: Li, Xinyu; Wang, Siman; Zhang, Dianjun; Xia, Maosheng; Li, Baoman
    Year: 2024
    Journal: Proceedings of the National Academy of Sciences of the USA (Open access)

 

  • Title: Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice
    Authors: Wang, Shuying; Yu, Xiaojin; Cheng, Lili; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Cell Death and Disease (Open access)

 

  • Title: Ketamine administration causes cognitive impairment by destroying the circulation function of the glymphatic system
    Authors: Wu, Xue; Wen, Gehua; Yan, Lei; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Biomedicine and Pharmacotherapy (Open access)

 

  • Title: Correction to: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology (Erratum, Open access)

 

  • Title: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology

 

  • Title: Trace metals and astrocytes physiology and pathophysiology
    Authors: Li, Baoman; Yu, Weiyang; Verkhratsky, Alexei N.
    Year: 2024
    Journal: Cell Calcium

 

Conclusion:

Dr. Baoman Li is a strong and deserving candidate for the Best Researcher Award. His innovative research, publication in high-impact journals, and interdisciplinary contributions demonstrate excellence and sustained scientific productivity. While he can enhance his visibility and further define his leadership role, his current achievements are more than sufficient to merit this prestigious recognition.

 

Alex Armstrong | Systems Neuroscience | Young Scientist Award

Mr. Alex Armstrong | Systems Neuroscience | Young Scientist Award

Mr. Alex Armstrong, University of Illinois, Urbana-Champaign, United States.

Alex Armstrong is an emerging leader in the field of systems neuroscience with a rich academic background and a global research footprint. Starting with a strong foundation in pharmacology from the University of Manchester and early research experience in China, he has built an interdisciplinary career that bridges experimental, computational, and translational neuroscience. His Ph.D. work at the University of Illinois Urbana-Champaign, under the guidance of Prof. Yurii Vlasov, focuses on the neural mechanisms of perceptual decision-making using innovative tools like tactile virtual reality and localized lesioning techniques. He has also played integral roles in teaching, mentoring, and collaborative NIH-funded research involving cutting-edge neural probes. His contributions span from fundamental neuroscience to neuroengineering, with multiple international presentations and a growing reputation in both academic and applied research communities.

Profile

Google Scholar

🎓 Early Academic Pursuits

Alex Armstrong’s journey into the world of neuroscience began with a strong academic foundation in Pharmacology at the University of Manchester, where he earned a BSc (Honors) degree in 2017. During his undergraduate studies, he delved into the neural effects of psychoactive substances, leading a research project examining the influence of various drugs on receptive fields in the rat lateral geniculate nucleus. His academic curiosity was not confined to the lab; Alex actively mentored disadvantaged youth in science and mathematics through the CityWise charity, demonstrating an early commitment to both education and societal impact. His academic appetite took a global turn when he received a competitive scholarship to Nanjing Medical University in China. There, he shadowed urologists and contributed to prostate cancer research by processing tumor samples and supporting manuscript preparation under the mentorship of Dr. Jian Lin. This early immersion into translational research laid the groundwork for his future endeavors in systems neuroscience.

🧠 Research Focus and Innovation

Currently pursuing his Ph.D. at the University of Illinois Urbana-Champaign, Alex Armstrong is at the forefront of neuroscience research under the mentorship of Professor Yurii Vlasov, a member of the National Academy of Engineering. His research seeks to unravel the neural underpinnings of perceptual decision-making using advanced technologies. Alex has pioneered the development of a novel tactile virtual reality system tailored for mice, enabling precise behavioral and neural investigations in ecologically valid scenarios. His contributions also include designing a localized lesioning technique to dissect the causal roles of specific cortical regions with unmatched spatial and temporal resolution. This work reflects his deep integration of behavior, electrophysiology, histology, and computational modeling — a rare confluence of skills that pushes the boundaries of systems neuroscience.

🔬 Professional Endeavors and Laboratory Leadership

Alex’s career includes impactful positions across globally renowned institutions. Prior to his doctoral studies, he served as a Research Technician at University College London, working in auditory neuroscience labs with PIs Jennifer Linden and Nicholas Lesica. There, he independently managed experiments related to auditory perception and hearing aid technology, leading both behavioral training and neural recordings. At UIUC, his laboratory involvement extends beyond individual research: he performs surgeries, manages mouse colonies, trains new graduate and undergraduate researchers, and leads collaborative NIH-funded projects investigating simultaneous electrical and chemical neural activity during seizures. Alex is a dependable pillar in the lab, bridging experiment and innovation through hands-on mentorship and project leadership.

🏆 Accolades and Recognition

Alex’s academic and scientific contributions have been recognized at multiple levels. He has presented his work through nine conference talks and poster presentations at premier forums including Barrels, the Society for Neuroscience, and AREADNE between 2021 and 2024. His visibility within the academic community extends to teaching, where he was entrusted as a Teaching Assistant for the competitive Neural Interface Engineering course (ECE421) in 2024 and 2025, guiding over 50 students through workshops, lessons, and exam reviews. His role on the UIUC neuroscience seminar committee in 2022 further demonstrated his leadership in promoting interdisciplinary dialogue, as he invited top neuroscientists from across the world to contribute to the university’s vibrant intellectual atmosphere.

🧪 Scientific Contributions and Methodological Advancements

One of Alex Armstrong’s most significant contributions lies in his ability to blend experimental neuroscience with computational modeling. His proficiency spans advanced analytical methods including Generalized Linear Models (GLM), Drift Diffusion Models (DDM), Dimensionality Reduction, and DyNetCP, positioning him at the intersection of theory and practice. His work not only provides high-resolution insights into brain function but also informs the design of next-generation neural interface devices. His leadership in testing novel neural probes capable of simultaneously recording both electrical and chemical signals underlines his commitment to tool development in neuroscience — a field critical to brain–machine interface technologies and precision neuromodulation.

🌍 Impact and Influence

Alex Armstrong’s research has both immediate and long-term scientific value. By enhancing our understanding of the cortical mechanisms underlying decision-making, his work informs the broader fields of psychology, cognitive science, and artificial intelligence. His contributions to probe testing during seizure dynamics have implications for epilepsy research, potentially opening doors for better diagnostics and treatment strategies. Furthermore, his global academic experience — spanning the U.K., U.S., and China — contributes to his inclusive scientific perspective and ability to work across cultural and institutional boundaries. He has not only advanced science but also nurtured future researchers through consistent mentoring and training roles.

🚀 Legacy and Future Contributions

Looking ahead, Alex Armstrong is poised to become a leading figure in systems neuroscience, particularly in decoding the neural basis of cognition and behavior. With a solid foundation in experimentation, programming, and tool development, he is uniquely equipped to tackle the grand challenges of brain science in the 21st century. His efforts are steadily laying a legacy of open, interdisciplinary research, bridging the biological and engineering aspects of neuroscience. Whether through innovative VR paradigms for animal behavior, high-density probe validation, or collaborative research across continents, Alex continues to pave the way for future breakthroughs in understanding the human brain.

Publication

  • Title: Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer
    Authors: JZ Lin, ZJ Wang, W De, M Zheng, WZ Xu, HF Wu, A Armstrong, JG Zhu
    Year: 2017

 

  • Title: Compression and amplification algorithms in hearing aids impair the selectivity of neural responses to speech
    Authors: AG Armstrong, CC Lam, S Sabesan, NA Lesica
    Year: 2022

 

  • Title: The hearing aid dilemma: amplification, compression, and distortion of the neural code
    Authors: A Armstrong, CC Lam, S Sabesan, NA Lesica
    Year: 2020

 

  • Title: Nonlinear sensitivity to acoustic context is a stable feature of neuronal responses to complex sounds in auditory cortex of awake mice
    Authors: M Akritas, AG Armstrong, JM Lebert, AF Meyer, M Sahani, JF Linden
    Year: 2024

 

  • Title: Contextual modulation is a stable feature of the neural code in auditory cortex of awake mice
    Authors: M Akritas, AG Armstrong, JM Lebert, AF Meyer, M Sahani, JF Linden
    Year: 2023

 

  • Title: Neuropeptides in the Extracellular Space of the Mouse Cortex Measured by Nanodialysis Probe Coupled with LC-MS
    Authors: K Li, W Shi, Y Tan, Y Ding, A Armstrong, Y Vlasov, J Sweedler
    Year: 2025

 

  • Title: Neural correlates of perceptual decision making in primary somatosensory cortex
    Authors: A Armstrong, Y Vlasov
    Year: 2025

 

  • Title: Perceptual decision-making during whisker-guided navigation causally depends on a single cortical barrel column
    Authors: AG Armstrong, Y Vlasov
    Year: 2025

 

 

Conclusion

Alex Armstrong exemplifies the next generation of neuroscientists—technically skilled, globally experienced, and intellectually versatile. His ability to merge behavioral neuroscience with advanced computational tools and engineering innovations positions him at the forefront of brain research. As he continues to contribute to our understanding of neural dynamics and brain–machine interfaces, Alex is set to leave a lasting impact on neuroscience and its applications in medicine and technology. His trajectory reflects not just scientific excellence, but also a commitment to mentorship, interdisciplinary collaboration, and innovation-driven discovery.

Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang, University of Virginia, United States.

Dr. Aiying Zhang is a rising scholar in the field of mental health data science, currently serving as an Assistant Professor at the University of Virginia and a Faculty Member at the UVA Brain Institute. Her academic foundation spans statistics, biomedical engineering, and clinical biostatistics, acquired from esteemed institutions including USTC, Tulane University, and Columbia University. Her research focuses on developing advanced computational and statistical tools—such as graphical models and multimodal fusion—to decode complex brain data from imaging and genetics. She applies these innovations to better understand and predict psychiatric conditions such as schizophrenia and Alzheimer’s disease. Her work is distinguished by its interdisciplinary nature, translational relevance, and potential to reshape clinical approaches to mental health.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Aiying Zhang’s journey into the realm of data science and mental health research began with a strong foundation in quantitative sciences. She earned her Bachelor of Science degree in Statistics from the prestigious School for the Gifted Young at the University of Science and Technology of China (USTC) in 2014. Driven by a passion for biomedical innovation and its intersection with human health, she pursued a Ph.D. in Biomedical Engineering from Tulane University, which she completed in 2021. Her graduate years were marked by deep inquiry into statistical modeling and neuroimaging, laying the groundwork for her later interdisciplinary research. She further honed her expertise through postdoctoral training in Clinical Biostatistics and Psychiatry at Columbia University Irving Medical Center, where she blended statistical rigor with clinical insight.

💼 Professional Endeavors

Dr. Zhang is currently an Assistant Professor of Data Science at the University of Virginia, where she has been on the tenure-track faculty since August 2023. She also holds a concurrent position as a Faculty Member at the UVA Brain Institute, underscoring her active role in advancing brain research across institutional boundaries. Prior to her academic appointment at UVA, she served as a Research Scientist II at the New York State Psychiatric Institute, contributing to high-impact psychiatric research. Her professional journey also includes research assistantships at Tulane University and the University of Florida, roles in which she cultivated strong collaborative and translational research skills.

🧠 Contributions and Research Focus

Dr. Zhang’s research lies at the intersection of data science, neuroscience, and mental health. She specializes in developing advanced statistical and computational methodologies to investigate the biological underpinnings of psychiatric and neurodevelopmental disorders. Her work prominently features the use of graphical models—both directed and undirected—and machine learning techniques to analyze complex datasets, such as MRI, DTI, fMRI, MEG, and various genomic modalities including SNP and DNA methylation. Her research has contributed to a deeper understanding of conditions like schizophrenia, Alzheimer’s disease, obsessive-compulsive disorder, and anxiety disorders, through the lens of multimodal data fusion and integrative neurogenetics.

🧪 Innovation in Mental Health Data Science

A distinctive hallmark of Dr. Zhang’s scholarship is her innovative application of multimodal fusion techniques to disentangle the complexities of typical and atypical brain development. Her work leverages high-dimensional neuroimaging and genetic data to draw meaningful inferences about mental health trajectories. She is particularly focused on building interpretable models that bridge the gap between data and clinical insight, thereby enabling earlier and more precise diagnostics. By combining machine learning with biomedical expertise, her contributions pave the way for next-generation tools in psychiatry and neuroscience.

🏅 Accolades and Recognition

Throughout her academic and professional trajectory, Dr. Zhang has earned widespread respect for her analytical acumen and interdisciplinary collaborations. Her postdoctoral role at Columbia, a hub for clinical psychiatry and biostatistics, positioned her among leaders in the field and enriched her research portfolio with translational applications. Her selection as faculty at a leading institution like UVA further reflects recognition of her scholarly excellence and her potential to drive future innovations in mental health data science.

🌍 Impact and Influence

Dr. Zhang’s work has significant implications for both the scientific community and clinical practice. Her methods empower researchers and clinicians alike to draw meaningful patterns from multimodal datasets, thereby advancing precision psychiatry. Moreover, her collaborative efforts across biomedical engineering, statistics, and clinical disciplines have fostered integrative frameworks that extend beyond academic settings into real-world applications. Her contributions are helping to shape a more data-driven and personalized future in mental health care.

🔮 Legacy and Future Contributions

As she continues her academic journey, Dr. Zhang aims to expand her research frontiers by exploring dynamic brain-behavior associations and improving the interpretability of AI models in clinical contexts. With a commitment to mentorship and open science, she is building a legacy rooted in intellectual rigor, innovation, and societal relevance. Her future contributions are expected to not only deepen our understanding of mental health disorders but also inspire a new generation of data scientists dedicated to neuroscience and human well-being.

Publication

  • Leverage multimodal neuro-imaging and genetics to identify causal relationship between structural and functional connectivity and ADHD with Mendelian randomization
    C Ji, S Lee, S Sequeira, J Jin, A Zhang2025

 

  • Integrated brain connectivity analysis with fmri, dti, and smri powered by interpretable graph neural networks
    G Qu, Z Zhou, VD Calhoun, A Zhang, YP Wang2025

 

  • Altered hierarchical rank in intrinsic neural time-scales in autism spectrum disorder
    A Solomon, W Yu, J Rasero, A Zhang2025

 

  • A Privacy-Preserving Domain Adversarial Federated learning for multi-site brain functional connectivity analysis
    Y Zhang, L Wang, KJ Su, A Zhang, H Zhu, X Liu, H Shen, VD Calhoun, …2025

 

  • A Novel GNN Framework Integrating Neuroimaging and Behavioral Information to Understand Adolescent Psychiatric Disorders
    W Yu, G Qu, Y Kim, L Xu, A Zhang2025

 

  • A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence
    A Zhang, G Zhang, B Cai, TW Wilson, JM Stephen, VD Calhoun, YP Wang2024

 

  • Exploring hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee2024

 

  • Time‐varying dynamic Bayesian network learning for an fMRI study of emotion processing
    L Sun, A Zhang, F Liang2024

 

  • Altered hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee, …2024

 

  • Associations Between Brain Connectivity and Psychiatric Symptoms in Children: Insights into Adolescent Mental Health
    D Mutu, K Ji, X He, S Lee, S Sequeira, A Zhang2024

 

🧾 Conclusion

Dr. Zhang’s journey exemplifies a seamless integration of data science and neuroscience to address pressing mental health challenges. Her innovative use of multimodal data and machine learning not only contributes to scientific advancement but also enhances real-world clinical decision-making. As she continues to pioneer research at the intersection of computation and psychiatry, her influence is poised to grow, shaping the future of precision mental health care and empowering both academia and clinical practice through data-driven insights.

 

Irena Roterman | Computational Neuroscience | Best Researcher Award

Prof. Dr. Irena Roterman | Computational Neuroscience | Best Researcher Award

Prof. Dr. Irena Roterman, Jagiellonian University Medical College, Poland.

Prof. Irena Roterman-Konieczna is a distinguished scientist whose academic roots in theoretical chemistry and biochemistry evolved into groundbreaking contributions in bioinformatics. With a Ph.D. and habilitation in biochemistry, and a postdoctoral fellowship at Cornell University, she developed a unique perspective on protein structure and folding. Her most notable innovation is the Fuzzy Oil Drop (FOD) model, which simulates protein folding by incorporating environmental effects using a 3D Gaussian function to map hydrophobicity distribution. This model has wide applicability—from understanding membrane proteins and amyloids to analyzing domain-swapping and receptor anchoring.

Profile

Scopus

 

🎓 Early Academic Pursuits

Irena Roterman-Konieczna began her academic journey in theoretical chemistry at the prestigious Jagiellonian University, graduating from the Faculty of Chemistry in 1974. Her early interest in molecular structure and the physicochemical underpinnings of biological systems laid a strong foundation for her interdisciplinary career. She deepened her scientific expertise by earning a Ph.D. in biochemistry in 1984 from Nicolaus Copernicus Medical Academy in Krakow, focusing on the structure of the recombinant IgG hinge region. Her postdoctoral studies at Cornell University from 1987 to 1989, under the mentorship of Harold A. Scheraga, further shaped her academic development. There, she explored force fields used in prominent computational programs like AMBER, CHARMM, and ECEPP, bridging theoretical modeling with biomolecular reality.

🧬 Professional Endeavors in Bioinformatics

Throughout her career, Prof. Roterman-Konieczna has been at the forefront of bioinformatics, dedicating herself to unraveling the mysteries of protein structure and amyloid formation. Following her habilitation in biochemistry at the Jagiellonian University Faculty of Biotechnology in 1994 and the conferment of her professorial degree in medical sciences in 2004, she continued to pioneer innovative methods in structural bioinformatics. Her hallmark contribution, the Fuzzy Oil Drop (FOD) model, revolutionized the understanding of protein folding. The model uniquely incorporates environmental influence into folding simulations by using a 3D Gaussian function to describe hydrophobicity distribution—proposing that hydrophobic residues form a central core while hydrophilic residues remain exposed. This paradigm introduced a more realistic, dynamic framework for simulating in silico protein folding.

🧪 Contributions and Research Focus

Prof. Roterman-Konieczna’s research has explored how proteins behave not only in aqueous environments but also within membranes and under the influence of external force fields. By modifying the Gaussian-based FOD model, she extended its applicability to membrane proteins, enabling quantification of their anchoring mechanisms and mobility. Her investigations into chaperonins and domain-swapping phenomena further illustrate the power of her model to decode complex folding and protein-protein interactions. She introduced a dual-variable simulation function—accounting for both internal forces (non-bonded interactions within the protein chain) and external forces (environmental effects)—to guide structural transformation toward energy minima. These ideas are foundational in modern computational biology, where realistic folding predictions are critical for understanding disease mechanisms and therapeutic targeting.

📘 Scholarly Publishing and Intellectual Outreach

A prolific author, Prof. Roterman-Konieczna has made significant contributions to scientific literature. She has authored several influential books, many published in Open Access to promote knowledge sharing. These works include “Protein Folding In Silico” (Elsevier), “Systems Biology – Functional Strategies of Living Organism” (Springer), and “From Globular Proteins to Amyloids” (Elsevier, 2020). Her books elegantly communicate complex bioinformatic strategies, such as ligand binding site identification, protein-protein interactions, and computer-aided diagnostics. Moreover, her editorial leadership from 2005 to 2020 as Chief Editor of the journal Bio-Algorithms and Med-Systems cemented her influence in shaping interdisciplinary dialogues at the intersection of medicine, biology, and computation.

🏆 Accolades and Recognition

Prof. Roterman-Konieczna’s work has earned international acclaim. Notably, she is listed among the Top 2% scientists worldwide by Stanford University and Elsevier—a testament to her influential research and academic reputation. With 149 publications indexed in PubMed, her impact on the bioinformatics community is both broad and profound. Over the course of her career, she has also served as a mentor to 14 doctoral students, many of whom continue to contribute to research and innovation across various fields of biomedicine.

🌐 Impact and Influence

Her research has advanced global understanding of how proteins fold, interact, and misfold—a process central to neurodegenerative diseases such as Alzheimer’s. The FOD model continues to provide a computational lens for studying amyloid formation and supramolecular assemblies. Her model is also pivotal in studying receptor anchoring in membranes and exploring domain-swapping mechanisms critical to protein complex formation. By integrating thermodynamic theory, statistical modeling, and structural biology, her work bridges theoretical research with biomedical applications, pushing the boundaries of in silico experimentation.

🧭 Legacy and Future Contributions

Prof. Irena Roterman-Konieczna’s legacy is rooted in her visionary approach to molecular biology, championing models that blend computational precision with biological realism. Her commitment to open access publishing and academic mentoring reflects a deep dedication to inclusive, sustainable scientific progress. As systems biology and personalized medicine continue to evolve, her models and insights will remain cornerstones for future explorations in disease modeling, drug design, and molecular diagnostics. Her career exemplifies how interdisciplinary thinking and computational ingenuity can transform the life sciences, leaving a legacy that will guide future generations of scientists.

Publication

  • Title: Aquaporins as Membrane Proteins: The Current Status
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), G. Szoniec (Grzegorz), L. Konieczny (Leszek)
    Year: 2025

 

  • Title: DisorderUnetLM: Validating ProteinUnet for efficient protein intrinsic disorder prediction
    Authors: K. Kotowski (Krzysztof), I.K. Roterman (Irena K.), K. Stapor (Katarzyna)
    Year: 2025

 

  • Title: Protein folding: Funnel model revised
    Authors: I.K. Roterman (Irena K.), M. Slupina (Mateusz), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Domain swapping: a mathematical model for quantitative assessment of structural effects
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Chameleon Sequences─Structural Effects in Proteins Characterized by Hydrophobicity Disorder
    Authors: I.K. Roterman (Irena K.), M. Slupina (Mateusz), K. Stapor (Katarzyna), K. Gądek (Krzysztof), P. Nowakowski (Piotr)
    Year: 2024

 

  • Title: Transmembrane proteins—Different anchoring systems
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: External Force Field for Protein Folding in Chaperonins─Potential Application in In Silico Protein Folding
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), D. Dułak (Dawid), L. Konieczny (Leszek)
    Year: 2024

 

  • Title: Structural features of Prussian Blue-related iron complex FeT of activity to peroxidate unsaturated fatty acids
    Authors: M. Lasota (Małgorzata), G. Zemanek (Grzegorz), O. Barczyk-Woźnicka (Olga), L. Konieczny (Leszek), I.K. Roterman (Irena K.)
    Year: 2024

 

  • Title: Editorial: Structure and function of trans-membrane proteins
    Authors: I.K. Roterman (Irena K.), M.M. Brylinski (Michal Michal), F. Polticelli (Fabio), A.G. de Brevern (Alexandre G.)
    Year: 2024

 

  • Title: Model of the external force field for the protein folding process—the role of prefoldin
    Authors: I.K. Roterman (Irena K.), K. Stapor (Katarzyna), L. Konieczny (Leszek)
    Year: 2024

 

🧠 Conclusion

Prof. Roterman-Konieczna’s career stands as a testament to how deep scientific insight and computational innovation can revolutionize biological understanding. Her FOD model not only enriches the study of protein dynamics but also provides a versatile framework for medical and pharmaceutical applications. With a legacy built on rigorous research, educational outreach, and academic leadership, her influence will continue to guide future advances in molecular biology, bioinformatics, and biomedical science.

 

Jin Yong Hong | Behavioral Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Jin Yong Hong | Behavioral Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Jin Yong Hong,  Yonsei University Wonju College of Medicine,  South Korea.

Dr. Jin Yong Hong, MD, PhD, is a distinguished neurologist and academic leader with a career grounded in excellence, innovation, and service. Beginning his medical education at Yonsei University, he steadily advanced through rigorous academic and clinical pathways to become an Associate Professor at Yonsei University Wonju College of Medicine. His focused expertise in movement disorders and dementia, enriched by both national and international research experience, especially at the University of Pennsylvania, highlights his dedication to solving complex neurological diseases. Through teaching, research, and clinical practice, he has significantly contributed to the growth of neuroscience and medical education in South Korea.

 

Profile

Google Scholar

Orcid

 

🎓 Early Academic Pursuits

Dr. Jin Yong Hong embarked on his journey in medicine with a deep commitment to academic excellence, beginning with his premedical studies at Yonsei University in Seoul from 2001 to 2003. He swiftly advanced through the rigorous medical curriculum, earning a Bachelor of Medical Science in 2007. Not content with just clinical practice, he pursued higher education with a Master of Medical Science completed in 2014 and culminated his scholarly journey with a Doctorate in Medical Science from the same esteemed institution in 2021. His academic path reflects a relentless pursuit of knowledge in the neurological sciences and a strong foundation in research methodology and clinical application.

🧠 Professional Endeavors in Neurology

Following his graduation, Dr. Hong immersed himself in hands-on clinical training, beginning with an internship and residency in Neurology at the renowned Severance Hospital of the Yonsei University Health System. This period, from 2007 to 2012, was marked by rigorous clinical immersion and specialization. His passion for neuroscience led him to pursue subspecialty training in Movement Disorders and Dementia, completing both clinical and research fellowships. Notably, he expanded his research exposure internationally through a postdoctoral fellowship at the University of Pennsylvania in the United States from 2022 to 2024, further enriching his expertise in neurodegenerative pathology and laboratory medicine.

🔬 Contributions and Research Focus

Dr. Hong’s research has consistently revolved around movement disorders and dementia, placing him at the forefront of understanding neurodegenerative diseases. His clinical experience, paired with extensive research work in both Korea and the United States, underscores his commitment to unraveling the complexities of disorders like Parkinson’s disease, Alzheimer’s disease, and related cognitive impairments. His interdisciplinary approach bridges clinical neurology with translational science, contributing significantly to advancing diagnostic and therapeutic strategies in the field.

🏥 Academic Leadership and Teaching

As an Associate Professor at the Department of Neurology, Yonsei University Wonju College of Medicine, Dr. Hong plays a vital role in shaping the next generation of neurologists. Since 2016, he has not only led clinical initiatives but also mentored students and junior faculty. His previous tenure as a Clinical Assistant Professor from 2014 to 2016 helped lay the groundwork for a collaborative and research-driven academic environment at the Wonju Severance Christian Hospital. His academic roles have helped blend clinical excellence with cutting-edge research in one of Korea’s premier medical institutions.

🏅 Accolades and Recognition

Dr. Hong’s excellence has been consistently recognized by peers and institutions alike. In 2014, he received the Academic Award for Highest Achievement from Yonsei University College of Medicine, marking him as a top-tier scholar among his peers. The same year, he was awarded a Fellowship by the Korean Movement Disorder Society, acknowledging his promising contributions to the field. Further cementing his role as a leading voice in neurological research, he was honored in 2021 with the JMD Article Award, reflecting the impact and relevance of his scholarly publications.

🌍 Impact and Influence in Neurological Science

With active memberships in the Korean Neurological Association, the Korean Movement Disorder Society, and the Korean Dementia Association, Dr. Hong maintains an influential presence within the scientific community. His cross-continental experience, especially through his postdoctoral work in the United States, has positioned him as a bridge between Eastern and Western neurological research paradigms. His publications and ongoing collaborations continue to influence both clinical practice and academic discourse, especially in the diagnosis and management of neurodegenerative conditions.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Jin Yong Hong is poised to continue making groundbreaking contributions in the field of neurology. With a career marked by academic distinction, clinical expertise, and research innovation, he represents a model of holistic excellence in medicine. His future work is likely to delve deeper into translational neuroscience, aiming to develop practical solutions for patients suffering from movement and cognitive disorders. As a mentor, researcher, and clinician, Dr. Hong is building a legacy that will inspire and influence the medical community for years to come.

Publication

  • Neuroanatomical substrates of visual hallucinations in patients with non-demented Parkinson’s disease
    S Shin, JE Lee, JY Hong, MK Sunwoo, YH Sohn, PH Lee
    2012

 

  • Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease
    JY Hong, JS Oh, I Lee, MK Sunwoo, JH Ham, JE Lee, YH Sohn, JS Kim, …
    2014

 

  • The MMSE and MoCA for screening cognitive impairment in less educated patients with Parkinson’s disease
    JI Kim, MK Sunwoo, YH Sohn, PH Lee, JY Hong
    2016

 

  • The burden of white matter hyperintensities is a predictor of progressive mild cognitive impairment in patients with Parkinson’s disease
    MK Sunwoo, S Jeon, JH Ham, JY Hong, JE Lee, JM Lee, YH Sohn, …
    2014

 

  • Cerebral microbleeds in patients with Parkinson’s disease
    JH Ham, H Yi, MK Sunwoo, JY Hong, YH Sohn, PH Lee
    2014

 

  • Subjective cognitive decline predicts future deterioration in cognitively normal patients with Parkinson’s disease
    JY Hong, MK Sunwoo, SJ Chung, JH Ham, JE Lee, YH Sohn, PH Lee
    2014

 

  • Clinical and biomarker characteristics according to clinical spectrum of Alzheimer’s disease (AD) in the validation cohort of Korean Brain Aging Study for the Early Diagnosis …
    J Hwang, JH Jeong, SJ Yoon, KW Park, EJ Kim, B Yoon, JW Jang, HJ Kim, …
    2019

 

  • Subjective cognitive complaints and objective cognitive impairment in Parkinson’s disease
    JY Hong, Y Lee, MK Sunwoo, YH Sohn, PH Lee
    2018

 

  • Neurocognitive and atrophic patterns in Parkinson’s disease based on subjective memory complaints
    JY Hong, JE Lee, YH Sohn, PH Lee
    2012

 

  • Telomere shortening reflecting physical aging is associated with cognitive decline and dementia conversion in mild cognitive impairment due to Alzheimer’s disease
    SH Koh, SH Choi, JH Jeong, JW Jang, KW Park, EJ Kim, HJ Kim, JY Hong, …
    2020

 

🧾 Conclusion

Dr. Hong’s journey illustrates the profound impact one dedicated individual can make within the scientific and medical communities. His legacy is already evident in his scholarly achievements, the students he mentors, and the patients he serves. As he continues to advance the understanding and treatment of neurological conditions, Dr. Hong remains a beacon of academic integrity, scientific rigor, and compassionate care. His future promises continued breakthroughs that will shape the field of neurology and bring hope to countless lives affected by neurodegenerative disorders.

Ibrahim Serag | Neuroimaging | Best Researcher Award

Dr. Ibrahim Serag | Neuroimaging | Best Researcher Award

Dr. Ibrahim Serag, Faculty of Medicine Mansoura university, Egypt.

Dr. Ibrahim Hamdino Ibrahim Serag is a dynamic intern doctor, clinical researcher, and emerging neurosurgical leader based in Mansoura, Egypt. With a stellar academic record from Mansoura University Faculty of Medicine, he has consistently demonstrated excellence both in the classroom and in clinical practice. His focused interest in neurosurgery, along with a profound commitment to medical research, has positioned him at the forefront of Egypt’s next generation of clinician-scientists.

Profile

Google Scholar

 

🧠 Early Academic Pursuits

Dr. Ibrahim Serag embarked on his journey in medicine with an unwavering curiosity for the human brain and its intricate workings. From the very beginning of his academic life at Mansoura University Faculty of Medicine, he stood out for his intellectual commitment and passion for neurosurgery. His dedication translated into academic excellence, earning him an impressive GPA of 3.78 and numerous distinctions across all courses. Early in his studies, he was drawn to the field of neurosurgery, not just for its technical challenges but for its potential to dramatically transform patient lives.

🩺 Professional Endeavors

As an intern doctor, Dr. Serag has been immersed in clinical practice while maintaining strong involvement in academic research. His elective neurosurgical rotation at Mansoura University’s hospital offered him valuable, hands-on experience that further fueled his desire to pursue neurosurgery. His professional path also includes significant leadership roles within NEGIDA Academy, where he serves as both a clinical researcher and course co-instructor, reflecting his dedication to both practice and pedagogy.

🔬 Contributions and Research Focus

Dr. Serag has carved a strong niche in neurosurgical research, particularly within the domains of systematic reviews, meta-analyses, and neuroimaging innovations. With over a dozen publications in high-impact journals and an H-index of 5, he has become a recognized voice in clinical neurology and neurosurgical diagnostics. He leads multiple collaborative research groups under Mansoura Manchester Research Society, Tanta University, and TSRA, focusing on evidence-based medicine and the clinical application of neuroscience. His work often explores the comparative effectiveness of neurosurgical techniques such as drainage, irrigation, and anesthetic modalities in chronic subdural hematomas, as well as neuroprotective agents and AI-assisted diagnostics.

🏆 Accolades and Recognition

Dr. Serag’s work has been acknowledged through multiple prestigious awards, reflecting both the depth and innovation of his research. He was honored with the Best Poster Presentation at the 4th and 5th Annual Research Days at Mansoura University, and also at the Alex Neuroscience Conference (ACN 2024). His academic distinction has earned him travel grants for ISA 2024 and ICCN 2024, affirming his growing reputation on both national and international platforms. Additionally, he received honors from university deans, cementing his place among the top emerging minds in his field.

🌍 Impact and Influence

Beyond personal accomplishments, Dr. Serag’s influence resonates through the many research groups he leads and the countless students and young doctors he mentors. His role as a team leader and course co-instructor at NEGIDA Academy enables him to share knowledge and cultivate a culture of inquiry and innovation among Egypt’s next generation of neurosurgeons. His collaborations extend internationally, where he works with senior academics and clinicians to bridge gaps in neuroclinical research and global healthcare accessibility.

📚 Legacy and Future Contributions

With a vision that goes beyond borders, Dr. Serag is determined to pioneer transformational change in neurosurgical research and practice. His future aspirations are deeply rooted in advancing minimally invasive neurosurgical techniques, expanding AI integration in neurodiagnostics, and fostering multinational research networks. As he seeks a neurosurgical residency, his goal remains steadfast: to blend clinical mastery with scholarly rigor, pushing the boundaries of neurological science for generations to come.

 

Publication

  • Title: Drainage versus no drainage after burr-hole evacuation of chronic subdural hematoma: a systematic review and meta-analysis of 1961 patients
    Authors: A Aljabali, AM Sharkawy, B Jaradat, I Serag, NM Al-Dardery, …
    Year: 2023

 

  • Title: Using artificial intelligence to improve body iron quantification: A scoping review
    Authors: AJ Nashwan, IM Alkhawaldeh, N Shaheen, I Albalkhi, I Serag, K Sarhan, …
    Year: 2023

 

  • Title: An updated systematic review of neuroprotective agents in the treatment of spinal cord injury
    Authors: I Serag, M Abouzid, A Elmoghazy, K Sarhan, SA Alsaad, RG Mohamed
    Year: 2024

 

  • Title: Irrigation versus no irrigation in the treatment of chronic subdural hematoma: An updated systematic review and meta-analysis of 1581 patients
    Authors: A Aljabali, I Serag, S Diab, AZ Alhadeethi, M Abdelhady, IM Alkhawaldeh, …
    Year: 2024

 

  • Title: Local anesthesia with sedation and general anesthesia for the treatment of chronic subdural hematoma: a systematic review and meta-analysis
    Authors: MA Abdelhady, A Aljabali, M Al-Jafari, I Serag, A Elrosasy, A Atia, A Ehab, …
    Year: 2024

 

  • Title: Insights into head and neck cancer research in Egypt: A scoping review
    Authors: MH El din Moawad, MM Shalaby, MA Sadeq, M Al-Jafari, JW A’amar, …
    Year: 2023

 

  • Title: Exploring the mechanisms and therapeutic approaches of mitochondrial dysfunction in Alzheimer’s disease: An educational literature review
    Authors: MHED Moawad, I Serag, IM Alkhawaldeh, A Abbas, A Sharaf, S Alsalah, …
    Year: 2024

 

  • Title: Postoperative elevated bed header position versus supine in the management of chronic subdural hematoma: a systematic review and meta-analysis
    Authors: I Serag, M Abdelhady, AA Awad, A Wageeh, A Shaboub, RH Elhalag, …
    Year: 2024

 

  • Title: Neuro-oncological research output in Africa: a scoping review of primary brain tumors
    Authors: MHE Moawad, M Al-Jafari, AM Taha, JW A’amar, O Alsayed, T Fayad, …
    Year: 2024

 

  • Title: Evaluating the efficacy and safety of platelet-rich plasma injection for erectile dysfunction: a systematic review and meta-analysis of randomized controlled trials
    Authors: M Deabes, MG Deameh, BA Bani Irshid, AH Al Darraji, I Serag, …
    Year: 2024

 

🧩 Conclusion

With a rare blend of clinical ambition, research innovation, and academic leadership, Dr. Ibrahim Serag is well on his path to becoming a transformative figure in neurosurgery. His ongoing contributions to evidence-based medicine, along with his global collaborations and scholarly achievements, underline a future filled with promise. Driven by curiosity and compassion, he aims not only to heal patients but to reshape how brain diseases are diagnosed and treated—leaving a lasting impact on the field of neurosurgery.

Gulcan Tascatan | Neuroscience of Pain | Best Researcher Award

Dr. Gulcan Tascatan | Neuroscience of Pain | Best Researcher Award

Dr. Gulcan Tascatan,  Zonguldak Alapli State Hospital,  Turkey.

Dr. Gülcan Taşçatan is a distinguished neurologist whose journey began with her medical education at Hacettepe University Kastamonu Faculty of Medicine. She specialized in neurology at Zonguldak Bülent Ecevit University and has since built an impressive career, holding key positions in various healthcare institutions. Her research focuses on migraines, chronic headaches, multiple sclerosis, and stroke-related neurological conditions, contributing valuable insights to the field. Her publications in esteemed medical journals and active participation in international conferences highlight her dedication to advancing neurology. As the Chief Physician at Zonguldak Alaplı State Hospital, she not only leads medical teams but also shapes healthcare practices and inspires future medical professionals.

Profile

Orcid

 

📚 Early Academic Pursuits

Gülcan Taşçatan embarked on her academic journey with a passion for medicine, graduating from Hacettepe University Kastamonu Faculty of Medicine in 2015. Her dedication to neurology led her to pursue specialization at Zonguldak Bülent Ecevit University Faculty of Medicine, where she earned her expertise in neurology in 2021. Her early academic years laid a strong foundation for her future contributions to the medical field, shaping her understanding of complex neurological disorders and treatment approaches.

💼 Professional Endeavors

Dr. Gülcan Taşçatan has had an illustrious career, serving in multiple prestigious healthcare institutions. She started as a general practitioner at Kars Digor Community Health Center before advancing her expertise as a research assistant at Zonguldak Bülent Ecevit University Neurology Department. Her journey continued as a neurology specialist at Zonguldak Kdz. Ereğli State Hospital, where she refined her skills in treating neurological conditions. Currently, she holds the esteemed position of Chief Physician at Zonguldak Alaplı State Hospital, demonstrating her leadership and commitment to enhancing healthcare services.

🧠 Contributions and Research Focus

Dr. Taşçatan has significantly contributed to the field of neurology, focusing on chronic headaches, migraines, multiple sclerosis, and stroke-related neurological conditions. Her research delves into understanding risk factors for chronic daily headaches and medication-overuse headaches, as evidenced by her publication in Brain and Behavior. She has also explored the effectiveness of greater occipital nerve blocks in chronic migraines and examined the correlation between silent cerebral lesions and lipid profiles in stroke patients. Through her research, she has advanced medical knowledge in neurology and offered new insights into diagnosis and treatment strategies.

🏅 Accolades and Recognition

Her dedication to research and clinical excellence has earned her recognition in the medical community. Dr. Taşçatan’s work has been published in well-respected international journals indexed in SCIE, EBSCO, and TR Dizin. She has also contributed as a peer reviewer, ensuring high academic standards in neurology publications. Furthermore, her research on multiple sclerosis, published in the Journal of Multiple Sclerosis Research, has been referenced in various scholarly articles, highlighting her impact on the field.

📖 Scientific Contributions and Publications

Beyond her research papers, Dr. Taşçatan has contributed to scientific literature by co-authoring a chapter on Parkinson’s disease treatment in the medical book Sağlık & Bilim 2024 Güncel Tıp-IV. Her participation in national and international neurology conferences, such as the 54th National Neurology Congress and the Global Migraine and Pain Society Meeting, further showcases her dedication to academic knowledge-sharing and medical advancements.

🌍 Impact and Influence

Dr. Taşçatan’s influence extends beyond academia into clinical practice and medical leadership. As a chief physician, she plays a pivotal role in shaping healthcare policies, improving patient care, and mentoring young medical professionals. Her commitment to neurology not only benefits her patients but also inspires future neurologists to pursue excellence in the field. Her research findings have contributed to a better understanding of neurological diseases, guiding new treatment methodologies and improving patient outcomes.

🔬 Legacy and Future Contributions

With a promising career ahead, Dr. Taşçatan continues to push the boundaries of neurology research and clinical innovation. Her commitment to studying complex neurological disorders and refining treatment methods ensures that she will leave a lasting impact on the medical community. By fostering new research, mentoring aspiring doctors, and leading healthcare initiatives, she paves the way for future advancements in neurology, solidifying her legacy as a dedicated physician, researcher, and medical leader.

Publication

  • Title: Evaluation of Risk Factors in Patients With Chronic Daily Headache and Medication‐Overuse Headache
    Author(s): Gülcan Taşçatan, Hüseyin Tuğrul Atasoy, Esra Acıman Demirel, Vildan Çakır Kardeş, Mustafa Açıkgöz, Ulufer Çelebi, Bilge Piri Çınar, Bilgehan Açıkgöz, Aynur Özge
    Year: 2025

 

  • Title: Effectiveness of Greater Occipital Nerve Blocks in Chronic Migraine
    Author(s): Esra Acıman Demirel, Burcu Karpuz, Sibel Özdemir, Gülcan Kalaycı, Hüseyin Tuğrul Atasoy
    Year: 2021

 

  • Title: Relationship Between Physical Disability and Black Holes in Multiple Sclerosis: Upper Extremity Functions – an Important Parameter
    Author(s): Bilge Piri Cinar, Gülcan Kalaycı, Mustafa Acikgoz, Serkan Ozakbas
    Year: 2021

 

  • Title: Evaluation of the Relationship Between Silent Cerebral Lesions and Triglyceride/HDL-Cholesterol in Patients With First Stroke Attack
    Author(s): Esra Acıman Demirel, Gülcan Kalaycı, Mustafa Açikgöz, Ulufer Çelebi, Bilge Cinar, Hüseyin Tuğrul Atasoy
    Year: 2020

Conclusion

Dr. Taşçatan’s journey exemplifies a profound commitment to neurology, research, and patient care. Her scientific contributions, leadership in healthcare, and influence in medical academia make her a key figure in the field. With a strong foundation in research and clinical expertise, she continues to push the boundaries of neurology, leaving a lasting impact on medical science. As she progresses in her career, her work will undoubtedly shape future advancements in neurological research and treatment, ensuring better healthcare outcomes for patients worldwide.