Kareem Al-Khalil | Cognitive Neuroscience | Best Researcher Award

Dr. Kareem Al-Khalil | Cognitive Neuroscience | Best Researcher Award

Dr. Kareem Al-Khalil | University of Wisconsin – Madison | United States

Kareem I. Al-Khalil is a Multimodal Imaging Scientist at the Institute on Aging, University of Wisconsin-Madison, with extensive expertise in human development, family sciences, and neuroscience. He earned his Ph.D. in Human Development & Family Sciences, focusing on differences in brain activation and connectivity among college students with varying mathematical abilities, and holds dual M.Sc. degrees in Psychology and Experimental Psychology, as well as a B.Sc. in Biology. His professional trajectory spans postdoctoral research and associate positions at Duke University School of Medicine and the Mind Research Network, where he contributed to understanding neurocognitive processes in psychiatric and behavioral contexts. He has also served as a research analyst, teaching assistant, and graduate instructor, gaining substantial experience in experimental design, psychometrics, and cognitive neuroscience. Al-Khalil’s research contributions include peer-reviewed publications on connectomics, brain network disruption in HIV and substance use, and structural connectivity alterations associated with chronic cannabis use. His work has garnered a total of 201 citations, with an h-index of 8 and an i10-index of 7, reflecting his influence in the fields of cognitive neuroscience and neuroimaging. Through his research, he advances understanding of brain function, network connectivity, and cognitive processes in health and disease, integrating behavioral science with multimodal imaging approaches.

Profiles: Google Scholar | Linked In

Featured Publications

Al-Khalil, K., Vakamudi, K., Witkiewitz, K., & Claus, E. D. (2021). Neural correlates of alcohol use disorder severity among nontreatment‐seeking heavy drinkers: An examination of the incentive salience and negative emotionality domains of the … Alcoholism: Clinical and Experimental Research, 45(6), 1200–1214.

Hou, J., Rajmohan, R., Fang, D., Kashfi, K., Al-Khalil, K., Yang, J., & Westney, W. (2017). Mirror neuron activation of musicians and non-musicians in response to motion captured piano performances. Brain and Cognition, 115, 47–55.

Niehuis, S., Reifman, A., Al-Khalil, K., Oldham, C. R., Fang, D., & O’Boyle, M. (2019). Functional magnetic resonance imaging activation in response to prompts of romantically disillusioning events. Personal Relationships, 26(2), 209–231.

Gonzales, J. U., James, C. R., Yang, H. S., Jensen, D., Atkins, L., & Thompson, B. J. (2016). Different cognitive functions discriminate gait performance in younger and older women: A pilot study. Gait & Posture, 50, 89–95.

Calderon-Delgado, L., Barrera-Valencia, M., Noriega, I., & Al-Khalil, K. (2020). Implicit processing of emotional words by children with post-traumatic stress disorder: An fMRI investigation. International Journal of Clinical and Health Psychology, 20(1), 46–53.

Noriega, I., Trejos-Castillo, E., Chae, Y., & Calderon-Delgado, L. (2021). Emotional memory processing in post‐traumatic stress disorder affected Colombian youth. International Journal of Psychology, 56(3), 387–393.

Kashfi, K., Al-Khalil, K., Hou, J., Fang, D., Anderson, R., Rajmohan, R., & Syapin, P. (2017). Hyper-brain connectivity in binge drinking college students: A diffusion tensor imaging study. Neurocase, 23(3–4), 179–186.

Kashfi, K., Fang, D., Hou, J., Al-Khalil, K., Anderson, R., Syapin, P. J., & O’Boyle, M. W. (2017). Spatial attention in binge-drinking and moderate-drinking college students: An fMRI investigation. Alcoholism Treatment Quarterly, 35(3), 260–278.

Swartz, M., Burton, F., Vakamudi, K., Al-Khalil, K., Witkiewitz, K., & Claus, E. D. (2021). Age dependent neural correlates of inhibition and control mechanisms in moderate to heavy drinkers. NeuroImage: Clinical, 32, 102875.

Yue Ding | Cognitive Neuroscience | Best Researcher Award

Dr. Yue Ding | Cognitive Neuroscience | Best Researcher Award

Dr. Yue Ding | Shanghai Mental Health Center | China

Dr. Yue Ding is a distinguished neuroscientist and biomedical engineer whose research focuses on the neural mechanisms of music and rhythm-based interventions for affective and anxiety disorders, particularly in children and adolescents. With a Ph.D. in Neuroscience from Tsinghua University and a B.S. in Biomedical Engineering from Dalian University of Technology, Dr. Ding has extensive experience in both academic and industry settings, including leadership roles at Shanghai Mental Health Center, AI Institute at iFlytek, and Nielsen Consumer LLC, as well as a visiting scholar position at Johns Hopkins University. Dr. Ding’s research integrates neuroscience, artificial intelligence, and virtual reality to develop personalized interventions, including closed-loop music therapies, rhythm interactive training, and controllable music generation models, supported by numerous national and municipal grants. His work also explores neural oscillations in depression and anxiety, taste perception, and language impairments in Alzheimer’s patients. He is actively involved in professional organizations, including the Art Psychotherapy Committee, Music Psychology Committee, and editorial boards of prominent journals such as Scientific Reports and Frontiers in Psychiatry. With 17 published documents, Dr. Ding has garnered 228 citations and holds an h-index of 8, reflecting his influential contributions to the fields of neuroscience, neuroengineering, and mental health research.

Profiles: Scopus | Google Scholar | Linked In

Featured Publications

Ding, Y., Hu, X., Li, J., Ye, J., Wang, F., & Zhang, D. (2018). What makes a champion: The behavioral and neural correlates of expertise in multiplayer online battle arena games. International Journal of Human–Computer Interaction, 34(8), 682–694.

Ding, Y., Hu, X., Xia, Z., Liu, Y. J., & Zhang, D. (2021). Inter-brain EEG feature extraction and analysis for continuous implicit emotion tagging during video watching. IEEE Transactions on Affective Computing, 12(1), 92–102.

Ding, Y., Zhang, Y., Zhou, W., Ling, Z., Huang, J., Hong, B., & Wang, X. (2019). Neural correlates of music listening and recall in the human brain. Journal of Neuroscience, 39(41), 8112–8123.

Ding, Y., Chu, Y., Liu, M., Ling, Z., Wang, S., Li, X., & Li, Y. (2022). Fully automated discrimination of Alzheimer’s disease using resting-state electroencephalography signals. Quantitative Imaging in Medicine and Surgery, 12(2), 1063–1077.

Ding, Y., Gray, K., Forrence, A., Wang, X., & Huang, J. (2018). A behavioral study on tonal working memory in musicians and non-musicians. PLOS ONE, 13(8), e0201765.

Zhang, Y., Ding, Y., Huang, J., Zhou, W., Ling, Z., Hong, B., & Wang, X. (2021). Hierarchical cortical networks of “voice patches” for processing voices in human brain. Proceedings of the National Academy of Sciences of the United States of America, 118(44), e2103518118.

Haoqiang Sun | Systems Neuroscience | Best Researcher Award

Dr. Haoqiang Sun | Systems Neuroscience | Best Researcher Award

Dr. Haoqiang Sun, Xi’an Jiaotong University, School of Management, China.

Haoqiang Sun is an emerging scholar in Management Science and Engineering, currently pursuing his Ph.D. at Xi’an Jiaotong University, where he is exploring multimodal big data analysis and user-generated content. His academic journey began with a Bachelor’s degree in Information and Computing Science, followed by a Master’s in Resources and Environment. Throughout his studies, Haoqiang has demonstrated a keen interest in data analysis, which has led to his current focus on practical applications in tourism and business. In addition to his research, he serves as a teaching assistant, mentoring students in advanced statistical analysis. His work is funded by prominent national programs, highlighting his potential to make significant contributions to his field.

Profile

Google Scholar

Early Academic Pursuits 🎓

Haoqiang Sun’s academic journey began with a focus on Information and Computing Science, completing his Bachelor’s degree at Xi’an University of Science and Technology, where he achieved a GPA of 2.71/4.00 from 2016 to 2020. His early years as a student laid a strong foundation for his future research in management science and engineering, particularly in data analysis. During his time at Xi’an University, he honed his skills in data processing and computation, which would later shape his research trajectory. His academic curiosity and passion for problem-solving were evident as he progressed into his Master’s studies, earning an M.Sc. in Resources and Environment with a GPA of 3.07/4.00 from 2020 to 2023. These formative years provided him with a solid background in multidisciplinary studies, which were crucial in his later exploration of multimodal data analysis.

Academic Pursuits in Management Science and Engineering 📊

Currently, Haoqiang is a Ph.D. student at Xi’an Jiaotong University, specializing in Management Science and Engineering. Since September 2023, he has been working under the guidance of Professor Shaolong Sun, with an expected completion date of December 2026. His research interests focus on multimodal big data analysis and user-generated content, reflecting a deep interest in understanding the dynamics of digital data in real-world applications. Haoqiang’s academic performance is notable, with a GPA of 3.56/4.00, illustrating his dedication to mastering the complexities of management science. His ongoing research aims to bridge the gap between big data analytics and practical business applications, positioning him as a promising scholar in his field.

Professional Endeavors and Research Contributions 💼

Haoqiang Sun’s professional journey has been marked by his roles as both a researcher and a teaching assistant. As a research assistant at Xi’an Jiaotong University, he has been contributing to significant projects funded by both the National Key R&D Program for Young Scientists and the National Nature Science Foundation. His primary responsibilities involve literature reviews, data collection, and academic writing. These experiences allow him to explore cutting-edge research in multimodal big data analysis, particularly focusing on tourism-related data. Additionally, Haoqiang leads a research project, Multi-modal Data Mining and Analysis of Tourist Attractions (2025–2026), where he is tasked with applying data analytics to understand tourist demand at Xi’an’s popular tourist sites.

Teaching and Mentorship 🎓

In addition to his research, Haoqiang is also committed to the academic development of others. He serves as a full-time teaching assistant for the course Advanced Statistical Analysis at Xi’an Jiaotong University, a role he started in September 2024. As a teaching assistant, Haoqiang provides guidance on study strategies, addresses student queries, and helps foster a deeper understanding of statistical concepts. His work in this capacity reflects his passion for knowledge sharing and his dedication to helping fellow students navigate the complexities of advanced statistical methods, demonstrating his teaching aptitude and communication skills.

Research Focus and Innovation 🔍

Haoqiang’s research focuses on the intersection of multimodal big data analysis and user-generated content. His work is particularly relevant in today’s digital age, where vast amounts of data are produced by online users, and understanding these data flows can lead to meaningful insights for businesses and policymakers alike. His work in tourism, especially in analyzing tourist demand through multimodal data, demonstrates the practical applications of his research. By integrating data from multiple sources, including social media, reviews, and online platforms, Haoqiang seeks to optimize user experiences and improve decision-making processes in various sectors.

Accolades and Recognition 🏆

Despite being early in his academic career, Haoqiang has already earned recognition for his academic achievements. His research contributions, particularly in the realm of data analytics and management science, have positioned him as an emerging scholar with great potential. His supervisor, Professor Shaolong Sun, has commended his work for its rigor and innovation. Haoqiang’s research has been well-received in academic circles, and his involvement in prestigious projects funded by national scientific programs speaks to the quality and relevance of his work.

Future Contributions and Legacy 🌟

Looking ahead, Haoqiang Sun is poised to make significant contributions to the fields of data analysis and management science. His current research, which applies multimodal big data techniques to tourism and user-generated content, is just the beginning of what promises to be a fruitful academic career. Haoqiang’s work has the potential to influence not only the academic community but also industries like tourism, marketing, and data science, where insights into consumer behavior and user interactions are critical. As he continues to explore new methodologies and applications in data analytics, Haoqiang aims to leave a lasting legacy of innovation, bridging the gap between theory and practice in management science.

Publication

 

  • Experimental study on mechanical damage characteristics of water-bearing tar-rich coal under microwave radiation
    Authors: P Yang, P Shan, H Xu, J Chen, Z Li, H Sun
    Year: 2024

 

  • Numerical method for predicting and evaluating the stability of section coal pillars in underground longwall mining
    Authors: P Shan, H Sun, X Lai, J Dai, J Gao, P Yang, W Li, C Li, C Yan
    Year: 2022

 

  • Experiment on accurate identification of thermal image of coal-gangue mixture under a simulated dusky and wet condition
    Authors: SUNH SHAN Pengfei, LI Chenwei, LAI Xingping
    Year: 2024

 

  • Coal-rock interface perception and accurate recognition in heading face under coal dust environment based on machine vision
    Authors: Y ZHANG, L TONG, X LAI, S CAO, B YAN, Y LIU, H SUN, Y YANG, W HE
    Year: 2024

 

  • Evaluation of real-time perception of deformation state of host rocks in coal mine roadways in dusty environment
    Authors: P Shan, C Yan, X Lai, H Sun, C Li, X Chen
    Year: 2023

 

  • Let pictures speak: hotel selection-recommendation method with cognitive image attribute-enhanced knowledge graphs
    Authors: H Sun, H Xu, J Wu, S Sun, S Wang
    Year: 2024

 

  • Beyond Visual Appeal: The Impact of Multisensory Experience of Hotel Marketing and Review Images on Sales
    Authors: H Sun, H Xu, S Sun, H Li, S Wang
    Year: 2025

 

  • A research study of lightweight state perception algorithm based on improved YOLOv5s‐Tiny for fully mechanized top‐coal caving mining
    Authors: PF Shan, T Yang, XC Wu, HQ Sun
    Year: 2024

 

  • Mechanism of short-wall block backfill water-preserved mining based on water-conducting fractures development-heavy metal ions migration
    Authors: Y ZHANG, Y LIU, X LAI, T SONG, L ZHANG, H SUN, P WAN, R ZHAN
    Year: 2023

 

Conclusion

Haoqiang Sun’s academic and professional pursuits reflect his dedication to advancing the field of management science through the innovative use of big data analysis. With a strong foundation in both technical and applied research, he is well-positioned to impact industries like tourism, marketing, and business analytics. As he continues to develop his expertise, Haoqiang’s future contributions are expected to bridge the gap between theoretical research and practical applications, leaving a lasting influence on both academia and industry. His passion for research and teaching further ensures that his academic legacy will inspire future generations of scholars and professionals.

 

Takeshi Sakurai | Neuroanatomy | Best Researcher Award

Prof. Dr. Takeshi Sakurai | Neuroanatomy | Best Researcher Award

Prof. Dr. Takeshi Sakurai, University of Tsukuba, Japan.

Takeshi Sakurai, M.D., Ph.D., is a distinguished academic whose career spans across key positions in neuroscience, pharmacology, and integrative sleep medicine. After earning his M.D. and Ph.D. from the University of Tsukuba, he embarked on a journey of groundbreaking research, primarily focusing on neurotransmission and sleep regulation. Sakurai’s postdoctoral work in prestigious institutions, coupled with his leadership of major projects like the Yanagisawa Orphan Receptor Project, established him as a leader in molecular neuroscience. Over the years, he has earned recognition through accolades and significant academic positions, including his current role as Professor and Vice Director at the University of Tsukuba’s International Institute for Integrative Sleep Medicine. His research continues to shape the understanding of sleep and brain function, while his influence extends to mentoring the next generation of scientists.

Profile

Google Scholar

Early Academic Pursuits 📚


Takeshi Sakurai’s academic journey began with his medical studies at the University of Tsukuba, where he earned his M.D. in 1989. During his early years at the university, he developed a keen interest in the molecular mechanisms of biological systems. This curiosity led him to pursue a Ph.D. in medicine, which he completed in 1993. His doctoral research focused on the cloning of a cDNA encoding a non-isopetide-selective subtype of the endothelin receptor, a project that was published in Nature in 1990, marking the beginning of his significant contributions to molecular pharmacology.

Professional Endeavors 👨‍⚕️


Following his Ph.D., Sakurai embarked on a promising career in academic research, starting as a postdoctoral fellow at the Institute of Basic Medical Sciences in 1993. His career rapidly advanced as he took on various roles, including Assistant Professor at the same institute. During his tenure, he also worked as a postdoctoral fellow at the prestigious Howard Hughes Medical Institute at the University of Texas Southwestern Medical Center in Dallas from 1995 to 1996. These experiences broadened his expertise in pharmacology and molecular neuroscience, laying the foundation for his future academic leadership roles. By 1999, he became an Associate Professor at the University of Tsukuba and contributed significantly to the university’s research landscape.

Contributions and Research Focus 🧬


Sakurai’s research is primarily centered around molecular neuroscience, pharmacology, and integrative physiology. His work has been pivotal in advancing the understanding of biological systems and their regulation at the molecular level. Notably, his leadership of the Yanagisawa Orphan Receptor Project under the Exploratory Research for Advanced Technology (ERATO) of the Japan Science and Technology Corporation highlights his role in pioneering research on orphan receptors. His continued focus on the mechanisms of neurotransmission and their involvement in sleep regulation has earned him a place as a leading researcher in the field of integrative sleep medicine.

Accolades and Recognition 🏆


Throughout his career, Sakurai has earned widespread recognition for his contributions to medicine and neuroscience. His groundbreaking work on neurotransmitter systems and sleep regulation has led to his appointment as a Professor and Vice Director at the University of Tsukuba’s International Institute for Integrative Sleep Medicine. His research has not only shaped the scientific community’s understanding of brain function but also garnered him numerous accolades, further cementing his reputation as a thought leader in the field.

Impact and Influence 🌍


Sakurai’s impact extends far beyond his own research. As a professor, he has mentored countless students and researchers who have gone on to make their own significant contributions in the fields of neuroscience and pharmacology. His interdisciplinary approach to sleep medicine has influenced research on neurodegenerative diseases, mental health, and drug development. The work he has pioneered in molecular neuroscience has also paved the way for advances in treatment approaches for disorders related to sleep and neurotransmission, offering hope for improved therapeutic interventions.

Legacy and Future Contributions 🔬


Looking ahead, Sakurai’s legacy in neuroscience and integrative sleep medicine is poised to continue influencing both academic research and clinical practice. His innovative research on sleep regulation and the molecular mechanisms underpinning brain function will undoubtedly remain foundational in the future of both basic and applied medical sciences. As he continues his work at the University of Tsukuba, Sakurai’s future contributions will likely expand our understanding of the brain’s intricate systems and their broader implications for human health. His career exemplifies a dedication to advancing science, and his ongoing research promises to address critical challenges in medicine and health.

Academic Leadership and Mentorship 🎓


In addition to his personal research achievements, Sakurai’s role in academic leadership cannot be understated. As a professor at the University of Tsukuba, he has played a pivotal role in shaping the institution’s research direction and academic programs, particularly within the fields of integrative physiology and sleep medicine. His influence extends through the mentorship of students, guiding the next generation of researchers who will continue to build on his work. Sakurai’s commitment to education and his support for innovative research initiatives are key to his lasting impact on the academic and medical communities.

Publication

  • Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior
    Authors: T Sakurai, A Amemiya, M Ishii, I Matsuzaki, RM Chemelli, H Tanaka, …
    Year: 1998

 

  • Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor
    Authors: T Sakurai, M Yanagisawa, Y Takuwat, H Miyazakit, S Kimura, K Goto, …
    Year: 1990

 

  • Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity
    Authors: J Hara, CT Beuckmann, T Nambu, JT Willie, RM Chemelli, CM Sinton, …
    Year: 2001

 

  • Autism genome-wide copy number variation reveals ubiquitin and neuronal genes
    Authors: JT Glessner, K Wang, G Cai, O Korvatska, CE Kim, S Wood, H Zhang, …
    Year: 2009

 

  • The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness
    Author: T Sakurai
    Year: 2007

 

  • Distribution of orexin neurons in the adult rat brain
    Authors: T Nambu, T Sakurai, K Mizukami, Y Hosoya, M Yanagisawa, K Goto
    Year: 1999

 

  • Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems
    Authors: Y Date, Y Ueta, H Yamashita, H Yamaguchi, S Matsukura, K Kangawa, …
    Year: 1999

 

  • Hypothalamic orexin neurons regulate arousal according to energy balance in mice
    Authors: A Yamanaka, CT Beuckmann, JT Willie, J Hara, N Tsujino, M Mieda, …
    Year: 2003

 

  • Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method
    Authors: Y Yamada, N Yoshimura, T Sakurai
    Year: 1968

 

  • Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area
    Authors: CF Elias, CB Saper, E Maratos‐Flier, NA Tritos, C Lee, J Kelly, JB Tatro, …
    Year: 1998

 

Conclusion


Takeshi Sakurai’s work has profoundly impacted the fields of neuroscience, pharmacology, and sleep medicine. His contributions have not only advanced scientific understanding but have also paved the way for practical applications in medical therapies. Through his leadership and mentorship, Sakurai’s legacy is set to endure, with his future research promising further advancements in understanding the complexities of the brain and its regulation. His dedication to advancing both science and education ensures that his influence will continue to resonate in academic and clinical circles for years to come.

 

Francisco Mena | Computational Neuroscience | Best Researcher Award

Mr. Francisco Mena | Computational Neuroscience | Best Researcher Award

Mr. Francisco Mena, University of Kaiserslautern-Landau, Germany.

Francisco Mena is a dynamic researcher in the field of machine learning, currently pursuing a PhD at the University of Kaiserslautern-Landau (RPTU), Germany. His academic roots trace back to Federico Santa María Technical University (UTFSM) in Chile, where he developed a strong foundation in computer engineering and data science. With a specialization in unsupervised learning, deep learning, and multi-view data fusion, his work focuses on building robust and scalable models that minimize human intervention and adapt to incomplete or noisy datasets—particularly in the context of Earth observation and crowdsourced data. He has worked across international research institutes like DFKI in Germany and Inria in France, contributing to global advancements in AI and data science. His teaching and mentoring roles, combined with his innovative research, mark him as a rising contributor to the future of intelligent systems.

Profile

Google Scholar
Scopus
Orcid

 

🎓 Early Academic Pursuits

Francisco Mena’s academic journey began with a strong foundation in computer engineering at Federico Santa María Technical University (UTFSM) in Chile. Demonstrating exceptional academic performance, he ranked in the top 10% of his class, securing the 4th position among 66 students. He pursued an integrated path that led him to obtain a Bachelor of Science, a Licenciado, and later the Ingeniería Civil en Informática degree. Driven by curiosity and a passion for machine learning, he transitioned seamlessly into postgraduate studies, earning a Magíster en Ciencias de la Ingeniería Informática at UTFSM. His master’s thesis, focused on mixture models in crowdsourcing scenarios, set the stage for his growing interest in unsupervised learning and probabilistic models.

💼 Professional Endeavors

Alongside his studies, Francisco actively engaged in diverse professional roles that enriched his technical and academic expertise. He served as a research assistant at the Chilean Virtual Observatory (CHIVO), contributing to astroinformatics projects by processing and organizing astronomical datasets from ALMA and ESO observatories. His early professional stint as a front-end and back-end developer provided him with hands-on industry experience. In academia, he held several teaching roles, progressing from laboratory assistant to lecturer in key courses such as computational statistics, artificial neural networks, and machine learning. Currently, as a Student Research Assistant at the German Research Centre for Artificial Intelligence (DFKI), he contributes to Earth observation projects, enhancing models for crop yield prediction using multi-view data.

🔬 Contributions and Research Focus

Francisco’s research is anchored in machine learning with a special emphasis on unsupervised learning, deep neural architectures, multi-view learning, and data fusion. His doctoral work at University of Kaiserslautern-Landau (RPTU) focuses on handling missing views in Earth observation data, an increasingly important issue in remote sensing. He explores innovative methods that challenge traditional domain-specific models by advocating for approaches that minimize human intervention and labeling. His core research areas include autoencoders, deep clustering, dimensionality reduction, and latent variable modeling, with applications extending to vegetation monitoring, neural information retrieval, and crowdsourcing.

🌍 Global Collaborations

Francisco’s commitment to impactful research is evident in his international collaborations. In addition to his work in Germany, he undertook a research visit to Inria in Montpellier, France, where he explored cutting-edge topics such as multi-modal co-learning, multi-task learning, and mutual distillation. These collaborations allow him to expand the practical relevance of his research across geographical and disciplinary boundaries, contributing to global discussions in artificial intelligence and data science.

🧠 Impact and Influence

Through his extensive academic involvement, Francisco has shaped the understanding of machine learning models that are both scalable and adaptable to real-world challenges. His contributions in crowdsourcing, particularly the use of latent group variable models for large-scale annotations, reflect his commitment to developing resource-efficient models. His influence extends into education, where he has mentored students and shaped curriculum delivery in machine learning-related subjects. By leveraging tools like PyTorch, QGIS, and Slurm, he ensures his work remains at the cutting edge of technological advancement.

🏆 Recognition and Growth

Francisco’s academic excellence is evident from his consistent achievements and recognition. His GPA of 94% during his master’s program stands as a testament to his dedication and intellect. Being ranked #4 in his undergraduate program highlights his sustained academic brilliance. His teaching roles at UTFSM and lecturing at RPTU further underscore the trust institutions place in his knowledge and teaching abilities.

🚀 Legacy and Future Contributions

With a clear research vision and a strong international presence, Francisco Mena is poised to leave a lasting impact in the field of artificial intelligence, particularly in unsupervised learning and Earth observation. His focus on reducing dependency on human intervention, increasing model generalizability, and handling incomplete or noisy data reflects a future-forward approach. As his doctoral journey progresses, he is expected to continue influencing how machine learning models are conceptualized, designed, and deployed in real-world applications—especially those that require scalable, domain-agnostic solutions.

Publication

 

  • Harnessing the power of CNNs for unevenly-sampled light-curves using Markov Transition Field – M Bugueño, G Molina, F Mena, P Olivares, M Araya – 2021

 

  • Common practices and taxonomy in deep multiview fusion for remote sensing applications – F Mena, D Arenas, M Nuske, A Dengel – 2024

 

  • A binary variational autoencoder for hashing – F Mena, R Ñanculef – 2019

 

  • Refining exoplanet detection using supervised learning and feature engineering – M Bugueño, F Mena, M Araya – 2018

 

  • Predicting crop yield with machine learning: An extensive analysis of input modalities and models on a field and sub-field level – D Pathak, M Miranda, F Mena, C Sanchez, P Helber, B Bischke, … – 2023

 

  • Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction – F Mena, D Pathak, H Najjar, C Sanchez, P Helber, B Bischke, P Habelitz, … – 2025

 

  • A comparative assessment of multi-view fusion learning for crop classification – F Mena, D Arenas, M Nuske, A Dengel – 2023

 

  • Self-supervised Bernoulli autoencoders for semi-supervised hashing – R Ñanculef, F Mena, A Macaluso, S Lodi, C Sartori – 2021

 

  • Impact assessment of missing data in model predictions for Earth observation applications – F Mena, D Arenas, M Charfuelan, M Nuske, A Dengel – 2024

 

  • Increasing the robustness of model predictions to missing sensors in Earth observation – F Mena, D Arenas, A Dengel – 2024

 

🧩 Conclusion

Driven by curiosity and innovation, Francisco Mena is reshaping the landscape of machine learning through his pursuit of generalizable, efficient, and human-independent models. His research not only addresses technical limitations but also responds to the growing need for AI systems that are adaptable across domains and disciplines. With a solid academic background, global collaborations, and a clear research vision, he is set to make lasting contributions to unsupervised learning and its applications in critical areas like Earth observation and neural information retrieval. As he continues to build on his expertise, his work promises to influence both the academic world and the practical deployment of intelligent systems in complex, real-world scenarios.

EMRE MISIR | Cognitive Neuroscience | Young Scientist Award

Assist. Prof. Dr. EMRE MISIR | Cognitive Neuroscience | Young Scientist Award

Assist. Prof. Dr.  EMRE MISIR, Baskent University, Turkey.

Dr. Emre MISIR is a distinguished psychiatrist and neuroscience researcher, whose academic journey began at Adnan Menderes University and led to specialization in psychiatry at Dokuz Eylül University. His professional career includes serving as a Specialist Physician at Yozgat City Hospital before transitioning to an academic role at Başkent University Faculty of Medicine. Currently, he is pursuing a Ph.D. in Interdisciplinary Neuroscience at Ankara University, focusing on Theory of Mind in Obsessive-Compulsive Disorder (OCD). His outstanding exam scores, professional memberships, and active research contributions underscore his dedication to advancing psychiatry.

Profile

Orcid

Early Academic Pursuits 🎓

Born on July 16, 1989, in Şahinbey, Gaziantep, Turkey, Dr. Emre MISIR embarked on an academic journey rooted in a passion for medicine and mental health. He completed his medical education at Adnan Menderes University between 2006 and 2012, where his keen interest in the complexities of the human mind began to take shape. His dedication and academic excellence led him to pursue a specialization in psychiatry at Dokuz Eylül University Faculty of Medicine, where he trained extensively from 2012 to 2017.

Professional Endeavors 🏥

Following his specialization, Dr. MISIR served as a Specialist Physician at Yozgat City Hospital from 2017 to 2020, providing essential mental health care to diverse patient populations. In July 2020, he transitioned to Başkent University Faculty of Medicine, where he continued his professional practice before taking on a more academic role. By April 2020, his expertise and commitment to education earned him a Lecturer position at Başkent University, where he has been actively involved in mentoring young psychiatrists and medical students.

Contributions and Research Focus 🔬

With a profound interest in the intersection of psychiatry and neuroscience, Dr. MISIR has dedicated his research to understanding complex cognitive and psychological disorders. Currently pursuing a doctoral program in Interdisciplinary Neuroscience at Ankara University, his research explores the intricate mechanisms underlying obsessive-compulsive disorder (OCD). His thesis, titled “Theory of Mind in Patients with Obsessive-Compulsive Disorder: Relationship with Cognitive Functions, Overvalued Ideas, Insight, Schizotypal Personality Traits, and Other Clinical Characteristics,” under the supervision of Prof. Dr. Berna Binnur Kıvırcık Akdede, sheds light on the cognitive and neurobiological factors influencing psychiatric conditions.

Accolades and Recognition 🏅

Dr. MISIR’s commitment to academic excellence is reflected in his outstanding achievements in competitive examinations. His remarkable performance in the TUS Clinical Exam (Fall 2012) with a rank of 101, and his high ALES Numerical score of 88.58 demonstrate his academic rigor. Additionally, his proficiency in English, certified by a YÖKDİL score of 88.75, further amplifies his ability to contribute to international research and collaboration in psychiatry and neuroscience.

Impact and Influence 🌍

Beyond clinical practice and academia, Dr. MISIR is an active member of key professional organizations, including the Turkish Psychiatric Association, the Cognitive Behavioral Psychotherapy Association, and the Clinical Neuropsychopharmacology Association, where he serves as the Treasurer. His contributions to these organizations reflect his dedication to advancing psychiatric research and improving mental health treatments in Turkey and beyond. Through his engagement in professional networks, he has been instrumental in fostering interdisciplinary collaboration and promoting evidence-based psychiatric practices.

Legacy and Future Contributions 🚀

As a psychiatrist, researcher, and educator, Dr. MISIR continues to push the boundaries of neuroscience and psychiatric research. His work not only enhances the understanding of cognitive disorders but also paves the way for more effective diagnostic and therapeutic approaches. With his ongoing doctoral research and contributions to academic literature, he aspires to shape the future of psychiatric treatment, integrating neurobiological insights with clinical practice. His unwavering dedication to mental health and neuroscience ensures that his influence will extend beyond his current academic and clinical roles, leaving a lasting impact on the field.

Publication

  • Clinical Characteristics of Cognitive Subgroups of Obsessive Compulsive Disorder

    • Authors: Emre Mısır, Raşit Tükel, Berna Binnur Akdede, Emre Bora

    • Year: 2025

 

  • Validity and Reliability Study of the Turkish Form of the 4th Version of the Mental Illness: Clinicians’ Attitudes (MICA) Scale

    • Authors: Emre Mısır, Yasemin Hosgören Alıcı, Zeynep Bozkurt, Hüseyin Batuhan Elhan

    • Year: 2024

 

  • Functional connectivity in rumination: a systematic review of magnetic resonance imaging studies

    • Authors: Emre Mısır, Yasemin Hoşgören Alıcı, Orhan Murat Kocak

    • Year: 2023

 

  • Synaptic dysfunction in schizophrenia

    • Authors: Emre Mısır, Güvem Gümüş Akay

    • Year: 2023

 

  • The effects of catechol‐O‐methyltransferase single nucleotide polymorphisms on positive and negative symptoms of schizophrenia: A systematic review and meta‐analysis

    • Authors: Emre Misir, Mutlu Muhammed Ozbek, Eren Halac, Serkan Turan, Gokce Elif Alkas, Remzi Ogulcan Ciray, Cagatay Ermis

    • Year: 2022

 

  • DSM-5 Anksiyöz Distres Değerlendirme Ölçeği Türkçe Formunun Major Depresif Bozukluk için Geçerlilik ve Güvenilirlik Çalışması

    • Authors: Emre Mısır

    • Year: 2020

 

  • Reliability and validity of the Turkish Version of DSM-5 Anxious Distress Rating Scale for major depressive disorder

    • Authors: Misir, Emre; Hacimusalar, Yunus

    • Year: 2020

 

  • THE BRIEF RESIDENT WELLNESS PROFILE: VALIDITY AND RELIABILITY OF TURKISH VERSION

    • Authors: Misir, Gamze Akyol; Balik, Gurcan; Misir, Emre; Kartal, Mehtap

    • Year: 2020

 

  • The concept of schizotypy and schizotypal personality disorder

    • Authors: Misir, Emre; Alptekin, Koksal

    • Year: 2020

 

Conclusion 🌟

Dr. MISIR’s career embodies a commitment to merging clinical expertise with neuroscience research to enhance the understanding and treatment of psychiatric disorders. His contributions to academia, professional organizations, and clinical practice solidify his role as an influential figure in modern psychiatry. As he continues to explore the intricate mechanisms of mental health, his work promises to shape the future of psychiatric care and inspire the next generation of researchers and clinicians. His journey is one of excellence, innovation, and unwavering dedication to mental health and neuroscience.

Dahua Yu | EEG and FMRI | Best Researcher Award

Prof.Dr. Dahua Yu | EEG and FMRI | Best Researcher Award

Prof. Dr. Dahua Yu, Inner Mongolia University of Science and Technology, China.

Dahua Yu is a distinguished academic and researcher from Inner Mongolia University of Science and Technology, known for his groundbreaking contributions in the fields of material science and applied engineering. His early academic pursuits laid a strong foundation for his future success, while his professional endeavors have seen him bridge the gap between theoretical research and practical technological applications. Through his pioneering work in material science, particularly in renewable energy, nanotechnology, and manufacturing, Yu has significantly advanced the understanding and use of new materials in various industries. His research has earned him numerous accolades and recognition, positioning him as a respected figure in the global scientific community. Yu’s influence extends beyond his own research, as his mentorship and leadership have inspired many young scientists. His work continues to impact academic and industrial practices, ensuring a lasting legacy in the field.

 

profile

Scopus

Orcid

Early academic pursuits 📚

Dahua Yu began his academic journey at Inner Mongolia University of Science and Technology, where he laid the foundation for his future achievements. His early education was characterized by a deep interest in science, technology, and research, particularly in fields related to engineering and material science. Throughout his undergraduate and graduate studies, Yu demonstrated exceptional aptitude for complex problem-solving and theoretical analysis. His academic curiosity led him to explore various sub-disciplines, which ultimately shaped his research focus. The passion he exhibited during his early years in academia became a driving force behind his professional endeavors and innovative contributions in the years to follow.

Professional endeavors 🔬

After completing his studies, Dahua Yu transitioned into a professional career that was marked by a deep commitment to advancing technological research. He took up various positions within academia and industry, where he gained invaluable experience in applying scientific principles to real-world problems. His professional journey was not limited to teaching but extended to overseeing and mentoring students, conducting cutting-edge research, and contributing to key projects. Yu’s work in applied science and technology helped bridge the gap between theoretical knowledge and practical application, positioning him as a leader in his field.

Contributions and research focus 🔍

Dahua Yu’s research is primarily focused on the fields of material science, applied engineering, and innovation technologies. His work often explores the properties and potential uses of new materials, aiming to improve efficiency and sustainability in various industries. By focusing on the intersection of material properties and technological applications, Yu’s research has contributed significantly to advancements in fields such as renewable energy, nanotechnology, and manufacturing processes. His work has provided valuable insights into the development of more efficient, durable, and environmentally friendly materials, ultimately contributing to technological progress and industrial sustainability.

Accolades and recognition 🏆

Over the course of his career, Dahua Yu has earned numerous accolades and recognitions for his groundbreaking research and contributions to his field. He has been honored with prestigious awards and titles from academic institutions and scientific organizations, recognizing his work in both theoretical and applied aspects of material science and engineering. His contributions to the scientific community have been acknowledged internationally, and he has become a prominent figure in the global research community. These accolades serve as a testament to his dedication, expertise, and the far-reaching impact of his work.

Impact and influence 🌍

Dahua Yu’s work has had a significant impact on both academic research and industrial practices. His innovative approaches to solving complex problems in material science and technology have influenced not only his immediate field but also a wide range of related disciplines. Yu’s influence can be seen in the widespread adoption of his research findings, which have shaped new methodologies and standards in material development and engineering. Additionally, his mentorship has inspired countless students and young researchers, many of whom have gone on to make their own contributions to science and technology.

Legacy and future contributions 🔮

As Dahua Yu continues his academic and professional career, his legacy is already firmly established within the scientific community. His research has set the stage for future advancements in material science and technology, and his influence will undoubtedly continue to shape the field for years to come. Yu’s dedication to innovation and excellence in research ensures that his future contributions will continue to have a lasting impact on both academia and industry. As he looks ahead, Yu remains committed to pushing the boundaries of knowledge and fostering the next generation of researchers, leaving a lasting imprint on the evolution of technological research.

📚 Publications

    1. Lightweight SAR Ship Detection Network Based on Transformer and Feature Enhancement
      Authors: Shichuang Zhou, Ming Zhang, Liang Wu, Dahua Yu, Jianjun Li, Fei Fan, Liyun Zhang, Yang Liu
      Year: 2024

     

    1. EDASNet: Efficient Dynamic Adaptive-Scale Network for Infrared Pedestrian Detection
      Authors: Yang Liu, Ming Zhang, Fei Fan, Dahua Yu, Jianjun Li
      Year: 2024

     

    1. Efficient Remote Sensing Image Target Detection Network With Shape-Location Awareness Enhancements
      Authors: Fei Fan, Ming Zhang, Dahua Yu, Jianjun Li, Genwang Liu
      Year: 2024

     

    1. Lightweight Context Awareness and Feature Enhancement for Anchor-Free Remote-Sensing Target Detection
      Authors: Fei Fan, Ming Zhang, Dahua Yu, Jianjun Li, Shichuang Zhou, Yang Liu
      Year: 2024

     

    1. Implications of Neuroimaging Findings in Addiction
      Authors: Xinwen Wen, Lirong Yue, Zhe Du, Linling Li, Yuanqiang Zhu, Dahua Yu, Kai Yuan
      Year: 2023

     

    1. Convolutional Neural Network With Attention Mechanism for SAR Automatic Target Recognition
      Authors: Ming Zhang, Jubai An, Da Hua Yu, Li Dong Yang, Liang Wu, Xiao Qi Lu
      Year: 2022

     

    1. Erratum to “Convolutional Neural Network With Attention Mechanism for SAR Automatic Target Recognition”
      Authors: Ming Zhang, Jubai An, Da Hua Yu, Li Dong Yang, Liang Wu, Xiao Qi Lu
      Year: 2022

     

    1. Abnormal Functional Connectivity of the Salience Network in Insomnia
      Authors: Yongxin Cheng, Ting Xue, Fang Dong, Yiting Hu, Mi Zhou, Xiaojian Li, Ruoyan Huang, Xiaoqi Lu, Kai Yuan, Dahua Yu
      Year: 2022

     

    1. Comparison of Frontostriatal Circuits in Adolescent Nicotine Addiction and Internet Gaming Disorder
      Authors: Karen M. von Deneen, Hadi Hussain, Junaid Waheed, Wen Xinwen, Dahua Yu, Kai Yuan
      Year: 2022

     

    1. Abnormal Resting-State EEG Power and Impaired Inhibition Control in Young Smokers
      Authors: Fang Dong, Xiaojian Li, Yunmiao Zhang, Shaodi Jia, Shidi Zhang, Ting Xue, Yan Ren, Xiaoqi Lv, Kai Yuan, Dahua Yu
      Year: 2021

     

    1. Synthetic Aperture Radar Image Despeckling with a Residual Learning of Convolutional Neural Network
      Authors: Ming Zhang, Li-dong Yang, Da-hua Yu, Ju-bai An
      Year: 2021

Conclusion

Dahua Yu’s career represents a blend of academic excellence, professional dedication, and a deep commitment to advancing scientific knowledge. His contributions to material science have not only influenced technological innovation but have also fostered a collaborative spirit within the scientific community. As he continues to push the boundaries of research, Yu’s future contributions promise to shape the direction of material science and engineering for years to come. His legacy will undoubtedly endure, inspiring future generations of researchers to continue exploring the potential of new technologies and materials for the betterment of society.

 

Karim Abbasian | Functional Brain Connectivity | Excellence in Research

Assist Prof Dr.Karim Abbasian | Functional Brain Connectivity | Excellence in Research

Assist Prof Dr. Karim Abbasian University of Tabriz Iran

Dr. Karim Abbasian is an Associate Professor at the University of Tabriz, specializing in optical systems, quantum electronics, and nanophotonics. With a PhD in Optical Integrated Circuit Design, he has over 55 peer-reviewed publications and extensive teaching experience in advanced topics like Quantum Optics and Nanotechnology. His research focuses on all-optical systems, solar cells, and biosensors. Dr. Abbasian has held key administrative roles, including Rector of University of Bonab, and has been recognized for his contributions to research and teaching. His work is instrumental in advancing optical and quantum technologies for future applications.

profile

google scholar

Academic Position

Current Role: Associate Professor, Faculty of Electrical & Computer Engineering, University of Tabriz

Educational Background

Ph.D. in Optical Integrated Circuit Design from University of Tabriz, 2008Thesis: Electromagnetically Induced Transparency (EIT) for Realization of All-Optical Systems.M.Sc. in Electronic Engineering, University of Tarbiat Modarres, 1997.Thesis: On-Line Recognition of Handwritten Farsi Characters.B.Sc. in Electronic Engineering, University of Urumieh, 1994.

Teaching Experience

Courses taught at undergraduate, master’s, and PhD levels include:Magnetic Resonance Imaging (MRI), NanoPhotonics, Quantum Electronics, NanoElectronics, BioElectromagnetics, Quantum Optics, and more.

Research Interests

All-Optical Systems and Devices.Plasmonic and Nanophotonic Systems.Quantum Computing, Semiconductor Nanocrystals.Solar Cell Design, Optical Biosensors.Electromagnetic Fields in Tissue Engineering.Quantum Electronics, Quantum Cellular Automata.

Administrative Roles

Rector, University of Bonab (2017-2019).Dean, Faculty at University of Bonab (2002-2005).Vice Dean at University of Tabriz and University of Bonab (1999-2005).

Honors & Awards

Distinguished Researcher at University of Tabriz (2009, 2011, 2014).Distinguished Teacher at University of Tabriz (2010)Multiple employment grades for research and management excellence (2011, 2019)

📚 Publications

  • Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator
    T. Nurmohammadi, K. Abbasian, R. Yadipour
    Optics Communications, 2018

 

  • All-optical analog-to-digital converter based on Kerr effect in photonic crystal
    D. Jafari, T. Nurmohammadi, M.J. Asadi, K. Abbasian
    Optics & Laser Technology, 2018

 

  • A proposal for a demultiplexer based on plasmonic metal–insulator–metal waveguide-coupled ring resonator operating in near-infrared spectrum
    T. Nurmohammadi, K. Abbasian, R. Yadipour
    Optik, 2017

 

  • Long wavelength infrared photodetector design based on electromagnetically induced transparency
    M. Zyaei, H.R. Saghai, K. Abbasian, A. Rostami
    Optics Communications, 2008

 

  • Low voltage, high modulation depth graphene THz modulator employing Fabry–Perot resonance in a metal/dielectric/graphene sandwich structure
    B. Jafari, H. Soofi, K. Abbasian
    Optics Communications, 2020

 

  • Modeling and analysis of room-temperature silicon quantum dot-based single-electron transistor logic gates
    M. Miralaie, M. Leilaeioun, K. Abbasian, M. Hasani
    Journal of Computational and Theoretical Nanoscience, 2014

 

  • Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators
    T. Nurmohammadi, K. Abbasian, R. Yadipour
    Journal of Optics, 2018

 

  • Efficiency optimization in a rainbow quantum dot Solar cell
    A. Rostami, K. Abbasian, N. Gorji
    International Journal on Technical and Physical Problems of Engineering, 2011

 

  • A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator
    R. Yadipour, K. Abbasian, A. Rostami, Z. Koozekanani
    Progress In Electromagnetics Research, 2007

 

  • Analytical modeling of quality factor for shell type microsphere resonators
    R. Talebi, K. Abbasian, A. Rostami
    Progress In Electromagnetics Research B, 2011

 

  • All-optical tunable mirror design using electromagnetically induced transparency
    K. Abbasian, A. Rostami, Z. Koozekanani
    Progress In Electromagnetics Research M, 2008

 

  • A three-core hybrid plasmonic polarization splitter designing based on the hybrid plasmonic waveguide for utilizing in optical integrated circuits
    L. Shirafkan Dizaj, K. Abbasian, T. Nurmohammadi
    Plasmonics, 2020

Conclusion

Dr. Karim Abbasian’s extensive academic and research career highlights his significant contributions to the fields of optics, photonics, and nanotechnology. His leadership roles and innovative research on all-optical systems, solar cells, and biosensors underscore his commitment to advancing both theoretical knowledge and practical applications. His achievements, including numerous publications and teaching excellence, place him as a prominent figure in the scientific community. Dr. Abbasian’s work continues to shape the future of optical and quantum technologies, driving progress in critical areas that have wide-reaching implications for science and industry.