Nikolaos Marinakis | Neurogenetics | Best Researcher Award

Dr. Nikolaos Marinakis | Neurogenetics | Best Researcher Award

Dr. Nikolaos Marinakis,  Laboratory of Medical Genetics, NKUA, Greece.

Dr. Nikolaos M. Marinakis is a highly accomplished Molecular Biologist and Geneticist whose career has been devoted to the diagnosis and molecular analysis of rare genetic disorders. With over a decade of laboratory experience and a strong academic background, he has steadily advanced from early bench research in molecular biology to become a Clinical Laboratory Geneticist and genome analyst. His expertise spans whole exome and whole genome sequencing, variant interpretation, CNV and RNA sequencing analysis, and the clinical application of Next Generation Sequencing. Notably, he has contributed to over 1500 molecular diagnoses in patients with rare diseases and has gained international recognition through the ESHG observership at Radboud University Medical Center. Dr. Marinakis exemplifies scientific excellence, clinical impact, and collaborative innovation in human genetics.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Dr. Nikolaos M. Marinakis embarked on his academic journey with a strong passion for understanding human biology at a molecular level. He earned his Bachelor’s degree in Molecular Biology and Genetics from the Democritus University of Thrace (DUTH), where he was actively involved in bench research. His undergraduate thesis focused on the functional characterization of NAT1 polymorphisms in the primate Macaca mulatta, offering an early glimpse into his interest in gene function and enzyme activity. This formative research cultivated his technical proficiency in cloning, site-directed mutagenesis, protein purification, and enzymatic assays—skills that would later become instrumental in his advanced academic and clinical endeavors.

🧬 Professional Endeavors in Genetics

Dr. Marinakis has spent more than a decade immersed in both research and clinical laboratories, gaining broad and deep expertise in molecular diagnostics. His professional foundation was laid at the Laboratory of Medical Genetics at St. Sophia’s Children Hospital, affiliated with the National and Kapodistrian University of Athens (NKUA). Here, he progressed from an MSc student to a PhD candidate and eventually to a Scientific Research Associate. His doctoral research was centered on the use of Next Generation Sequencing (NGS) technologies for diagnosing rare genetic disorders, and his project involved bioinformatic evaluation and functional validation of genomic variants. As a current genome analyst, he supervises Clinical Whole Exome Sequencing, routinely interpreting variants in over 1,500 complex diagnostic cases encompassing neurodevelopmental, nephrological, cardiovascular, and ophthalmological diseases.

🔍 Research Contributions and Focus

Dr. Marinakis’s primary research lies at the intersection of clinical genomics and bioinformatics. His scientific focus is on the molecular investigation of rare monogenic disorders, variant classification, and the integration of novel genomic technologies such as long-read sequencing into diagnostic pipelines. He has also contributed to the development and clinical implementation of molecular assays for both postnatal and prenatal diagnostics. His research continues to unravel the genetic underpinnings of syndromes with previously unknown etiologies, enriching the understanding of human genomic complexity. Through RNA sequencing and CNV analysis, he bridges the gap between genotype and phenotype in a clinical context.

🏅 Accolades and Recognition

In recognition of his significant contributions to human genetics, Dr. Marinakis was awarded a competitive observership by the European Society of Human Genetics (ESHG). This prestigious award enabled him to join the Genome Diagnostics unit at the Radboud University Medical Center in the Netherlands under the mentorship of Professor Christian Gilissen. There, he expanded his expertise in whole genome sequencing, variant annotation, structural variation, and advanced bioinformatic pipelines. His growing recognition as a Clinical Laboratory Geneticist (ErCLG-certified) further underscores his professional standing in Europe’s genetics community.

🧠 Impact on Clinical Genomics

Dr. Marinakis has made a measurable impact on translational medicine by bringing genomic science to the bedside. Through his analysis and interpretation of complex NGS datasets, he has helped diagnose hundreds of patients with elusive genetic conditions, directly improving clinical outcomes and enabling personalized treatment strategies. His ability to convert raw genomic data into meaningful clinical insights has made him a key figure in the field of diagnostic genetics in Greece and beyond. His meticulous approach to variant interpretation, especially in challenging or ambiguous cases, continues to guide clinicians in the decision-making process.

🌍 Influence and Collaboration

A committed collaborator and lifelong learner, Dr. Marinakis maintains strong academic and clinical ties with global institutions. His experiences at NKUA and Radboud UMC have equipped him with a broad international outlook on genomics and rare disease research. He actively contributes to cross-border initiatives and research consortiums focused on data sharing, standardization of bioinformatics pipelines, and discovery of novel disease mechanisms. His LinkedIn presence and professional engagement reflect his dedication to connecting with the wider genetics and biomedical community.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Marinakis is poised to lead initiatives that integrate AI-driven genomic interpretation and third-generation sequencing into clinical practice. He aspires to contribute to national and European genomics strategies aimed at early diagnosis, carrier screening, and reproductive planning. By mentoring younger scientists and continuing to publish translational research, he is building a legacy rooted in both scientific rigor and compassionate care. With his strong foundation and forward-thinking vision, Dr. Marinakis represents a dynamic force in the future of precision medicine and rare disease diagnostics.

Publication

  • Title: Phenotype‐driven variant filtration strategy in exome sequencing toward a high diagnostic yield and identification of 85 novel variants in 400 patients with rare Mendelian disorders
    Authors: NM Marinakis, M Svingou, D Veltra, K Kekou, C Sofocleous, FN Tilemis, …
    Year: 2021

 

  • Title: Germline CNV detection through whole-exome sequencing (WES) data analysis enhances resolution of rare genetic diseases
    Authors: FN Tilemis, NM Marinakis, D Veltra, M Svingou, K Kekou, A Mitrakos, …
    Year: 2023

 

  • Title: Case report: a novel synonymous ARPC1B gene mutation causes a syndrome of combined immunodeficiency, asthma, and allergy with significant intrafamilial clinical heterogeneity
    Authors: I Papadatou, N Marinakis, E Botsa, M Tzanoudaki, M Kanariou, I Orfanou, …
    Year: 2021

 

  • Title: The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders
    Authors: A Saffari, T Lau, H Tajsharghi, EG Karimiani, A Kariminejad, S Efthymiou, …
    Year: 2023

 

  • Title: Expanded phenotypic spectrum of neurodevelopmental and neurodegenerative disorder Bryant-Li-Bhoj syndrome with 38 additional individuals
    Authors: DE Layo-Carris, EE Lubin, AK Sangree, KJ Clark, EL Durham, …
    Year: 2024

 

  • Title: De novo variants in RNF213 are associated with a clinical spectrum ranging from Leigh syndrome to early-onset stroke
    Authors: T Brunet, B Zott, V Lieftüchter, D Lenz, A Schmidt, P Peters, R Kopajtich, …
    Year: 2024

 

  • Title: SDH-deficient renal cell carcinoma: A case report associated with a novel germline mutation
    Authors: V Milionis, D Goutas, D Vlachodimitropoulos, AC Lazaris, I Kyriazis, …
    Year: 2021

 

  • Title: Towards a standard benchmark for variant and gene prioritisation algorithms: PhEval-Phenotypic inference Evaluation framework
    Authors: Y Bridges, V de Souza, KG Cortes, M Haendel, NL Harris, DR Korn, …
    Year: 2024

 

  • Title: Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome
    Authors: V Salpietro, R Maroofian, MS Zaki, J Wangen, A Ciolfi, S Barresi, …
    Year: 2024

 

  • Title: Combined exome analysis and exome depth assessment achieve a high diagnostic yield in an epilepsy case series, revealing significant genomic heterogeneity and novel mechanisms
    Authors: D Veltra, FN Tilemis, NM Marinakis, M Svingou, A Mitrakos, K Kosma, …
    Year: 2023

 

✅ Conclusion

Dr. Nikolaos M. Marinakis stands out as a distinguished researcher in the field of medical genetics and genomics. His work bridges cutting-edge molecular research with clinical diagnostics, making a direct impact on patient care and the understanding of rare diseases. His technical expertise, international collaborations, and growing leadership in genomic diagnostics reflect both his current achievements and his potential for future contributions to precision medicine. He is a strong candidate for recognition in any academic or professional forum honoring excellence in translational genomics and biomedical research.

Ling-Yan Su | Molecular Neuroscience | Best Researcher Award

Dr. Ling-Yan Su | Molecular Neuroscience | Best Researcher Award

Dr. Ling-Yan Su, Yunnan Agricultural University, China.

Professor Ling-Yan Su is a leading figure in the field of food science and plant physiology, currently serving at the College of Food Science and Technology, Yunnan Agricultural University. With a solid academic foundation from Yunnan University and the Chinese Academy of Sciences, she has built a dynamic career that bridges molecular biology and applied agricultural research. Her pioneering work on melatonin-based pre-harvest treatments has significantly advanced our understanding of natural preservation techniques, especially in prolonging the post-harvest life and quality of fruits like Myrica rubra. Her research focuses on enhancing antioxidant systems, inhibiting spoilage, and activating plant defense pathways through sustainable, low-toxicity treatments.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Ling-Yan Su’s journey in the biological sciences began with a Bachelor of Science degree from the School of Life Science at Yunnan University (2007–2011). Demonstrating academic curiosity and determination early on, she expanded her horizons through a year-long visiting student program (2010–2011) at the prestigious Kunming Institute of Zoology, affiliated with the Chinese Academy of Sciences. This experience laid the foundation for her doctoral research, which she pursued at the same institute from 2011 to 2017, where she rigorously explored complex biological systems, further solidifying her passion for food science and plant physiology.

🧪 Professional Endeavors in Science

Professor Su’s professional career has been marked by consistent growth across esteemed academic institutions. Following her Ph.D., she joined the Kunming Institute of Zoology as a research assistant, rapidly advancing to the role of associate professor. In 2022, she transitioned to the College of Food Science and Technology at Yunnan Agricultural University, initially as an associate professor before her promotion to full professor within the same year. Her academic trajectory reflects a blend of deep research engagement and an evolving role in shaping food science education and innovation in China.

🌿 Contributions and Research Focus

Professor Su’s groundbreaking work lies at the intersection of plant physiology, post-harvest fruit biology, and food preservation technology. She has made significant contributions to understanding how melatonin, a naturally occurring compound, can be leveraged to extend the post-harvest shelf life of Myrica rubra (Chinese bayberry). Her studies demonstrate that melatonin pre-harvest treatments reduce oxidative stress markers, inhibit microbial decay, and activate the phenylpropanoid pathway, resulting in elevated antioxidant activity. This line of research not only reveals novel mechanisms of fruit preservation but also opens sustainable avenues in post-harvest biology and food safety.

🏅 Accolades and Recognition

While formal awards are not listed, Professor Su’s rapid academic promotions and appointments at prestigious research institutes such as the Chinese Academy of Sciences and Yunnan Agricultural University underscore her recognition within the scientific community. Her work is contributing to a growing body of literature on sustainable food science innovations, earning her esteem among peers and collaborators in the agricultural biotechnology field.

🌱 Impact and Influence

Professor Su’s innovative application of melatonin in fruit preservation has substantial implications for food technology and agricultural practices. Her research directly addresses global concerns such as food spoilage, post-harvest losses, and chemical-free preservation methods. By enhancing natural antioxidant defenses and inhibiting spoilage at a molecular level, her work supports both farmers and consumers in accessing healthier and longer-lasting produce, especially within the context of environmentally conscious food systems.

🔬 Legacy in Food Science

The legacy Professor Su is building centers around translating scientific inquiry into practical solutions for real-world agricultural challenges. Her research is charting a course for future studies in the bio-preservation of fruits and vegetables using natural treatments. As she continues to mentor students and collaborate across disciplines, her influence is extending into the next generation of food scientists and researchers focused on plant biochemistry, post-harvest technology, and sustainable agricultural innovation.

🚀 Future Contributions and Vision

Looking ahead, Professor Ling-Yan Su is poised to further explore how endogenous compounds like melatonin can be applied across various fruits and food crops. Her vision includes broadening the scope of natural food preservation strategies and delving deeper into molecular pathways that regulate plant defense responses. As a respected academic and scientist, her future contributions are expected to shape healthier food systems and deepen scientific understanding of plant–microbe–compound interactions.

Publication

  • Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
    Authors: DJ Klionsky, AK Abdel-Aziz, S Abdelfatah, M Abdellatif, A Abdoli, S Abel, …
    Year: 2021

 

  • Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model
    Authors: R Luo, LY Su, G Li, J Yang, Q Liu, LX Yang, DF Zhang, H Zhou, M Xu, …
    Year: 2020

 

  • Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation
    Authors: LY Su, H Li, L Lv, YM Feng, GD Li, R Luo, HJ Zhou, XG Lei, L Ma, JL Li, …
    Year: 2015

 

  • Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin
    Authors: YM Feng, YF Jia, LY Su, D Wang, L Lv, L Xu, YG Yao
    Year: 2013

 

  • Association of the LRRK2 genetic polymorphisms with leprosy in Han Chinese from Southwest China
    Authors: D Wang, L Xu, L Lv, LY Su, Y Fan, DF Zhang, R Bi, D Yu, W Zhang, XA Li, …
    Year: 2015

 

  • Atg5- and Atg7-dependent autophagy in dopaminergic neurons regulates cellular and behavioral responses to morphine
    Authors: LY Su, R Luo, Q Liu, JR Su, LX Yang, YQ Ding, L Xu, YG Yao
    Year: 2017

 

  • Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication
    Authors: MS Wang, R Zhang, LY Su, Y Li, MS Peng, HQ Liu, L Zeng, DM Irwin, …
    Year: 2016

 

  • Melatonin alleviates morphine analgesic tolerance in mice by decreasing NLRP3 inflammasome activation
    Authors: Q Liu, LY Su, C Sun, L Jiao, Y Miao, M Xu, R Luo, X Zuo, R Zhou, P Zheng, …
    Year: 2020

 

  • Out of Southern East Asia of the brown rat revealed by large-scale genome sequencing
    Authors: L Zeng, C Ming, Y Li, LY Su, YH Su, NO Otecko, A Dalecky, S Donnellan, …
    Year: 2018

 

  • Moringa oleifera Lam. leaves as new raw food material: A review of its nutritional composition, functional properties, and comprehensive application
    Authors: M Yang, L Tao, XR Kang, ZL Wang, LY Su, LF Li, F Gu, CC Zhao, J Sheng, …
    Year: 2023

 

✅ Conclusion

Professor Su’s academic journey and research contributions exemplify scientific excellence rooted in sustainability and innovation. Her work not only provides practical solutions to post-harvest challenges but also contributes to broader efforts in reducing food waste and promoting natural preservation methods. As she continues to mentor young researchers and expand her studies, Professor Su is well-positioned to leave a lasting impact on food science and agricultural biotechnology. Her career reflects a thoughtful integration of research, application, and forward-looking vision in the quest for healthier and more resilient food systems.

Izabela Małysz-Cymborska | Neurogenetics | Best Researcher Award

Assoc. Prof. Dr. Izabela Małysz-Cymborska | Neurogenetics | Best Researcher Award

Assoc. Prof. Dr. Izabela Małysz-Cymborska,  Department of Neurology and Neurosurgery, School of Medicine, University of Warmia and Mazury, Poland.

Dr. Izabela Małysz-Cymborska is a distinguished biomedical researcher and Associate Professor in Neurosurgery at the University of Warmia and Mazury, Poland. Her academic path began with a Master’s in Biology and culminated in a Ph.D. focused on hormonal mechanisms, followed by a Habilitation in Medicine. Her research spans neuroregeneration, stem cell therapy, and immunomodulatory strategies for neurological diseases such as ALS and stroke. She has led and contributed to nationally funded projects like NanoTech4ALS, Explore Me, and her current OPUS-funded investigation using a swine model for stroke therapy. Her interdisciplinary approach bridges molecular biology, reproductive science, and clinical neuroscience, demonstrating a rare ability to translate foundational research into therapeutic innovation.

Profile

Google Scholar

🎓 Early Academic Pursuits

Dr. Izabela Małysz-Cymborska embarked on her academic journey with a deep-rooted interest in biological sciences. Born on September 21, 1985, in Poland, she pursued her undergraduate studies at the University of Warmia and Mazury in Olsztyn, earning a Master of Science degree in Biology in 2009. Her passion for advanced biomedical research led her to the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, where she completed her Ph.D. in 2015. Her doctoral research, grounded in hormonal action mechanisms, laid the foundation for her future contributions to neurobiology and regenerative medicine.

🧠 Professional Endeavors in Neuroscience

Dr. Małysz-Cymborska’s postdoctoral and professional journey has been largely rooted in neuroscientific investigation, with a special focus on neuroregeneration and stroke therapy. Since 2021, she has held the position of Associate Professor in the Department of Neurosurgery at the University of Warmia and Mazury. Her early postdoctoral fellowships (2015–2018) focused on pioneering work in the application of glial progenitors and stem cells in neurological disorders like ALS. These formative experiences not only enriched her research trajectory but also provided a vital bridge between animal studies and translational medicine.

🧪 Research Focus and Scientific Contributions

Dr. Małysz-Cymborska’s research portfolio reflects a consistent dedication to understanding complex neural pathologies and their treatment through regenerative approaches. She has led and contributed to several national and international projects, including NanoTech4ALS, which investigated MRI-monitored transplantation techniques using hydrogel carriers for ALS treatment. Her current role as Principal Investigator in the OPUS-funded project explores an endovascular model of stroke in swine, opening new therapeutic pathways for immunomodulation. She has also delved into reproductive biology, investigating the influence of gonadotropins on prostaglandin synthesis and the function of the corpus luteum, showcasing her multidisciplinary expertise.

🧬 Bridging Regeneration and Technology

A major hallmark of Dr. Małysz-Cymborska’s work is the integration of regenerative medicine and cutting-edge biomedical technologies. Her involvement in Explore Me and NanoTech4ALS demonstrated her commitment to merging cellular therapy with advanced biomaterials and imaging. These projects explored the therapeutic potential of mesenchymal stem cells and human glial progenitors for neurodegenerative conditions, reflecting her drive to push boundaries in translational medicine and neurosurgery.

🏅 Accolades and Recognition

Dr. Małysz-Cymborska’s scientific accomplishments were recognized through her Habilitation Degree in Medicine, awarded in 2022 by the University of Warmia and Mazury—a prestigious academic achievement in Poland that underscores her contributions to the medical sciences. Additionally, her appointment as the Dean’s representative for animal experiments between 2018 and 2019 further illustrates the trust and respect she commands within her institution and the research community.

🌍 Impact and Influence in Translational Neuroscience

Her work has had significant implications not only in Poland but also across the global neuroscience landscape. By focusing on models that simulate real-world human neurological disorders, such as swine models for stroke and ALS, she has established platforms that can more accurately predict treatment outcomes in humans. Her collaborative efforts within national strategic medical programs have enriched the broader field of translational neuroscience, particularly in immune response modulation and neural repair mechanisms.

🔮 Legacy and Future Contributions

As her OPUS project continues until 2025, Dr. Izabela Małysz-Cymborska is poised to deliver crucial insights into stroke immunotherapy. Her legacy lies in her ability to traverse boundaries between endocrinology, neurobiology, and regenerative therapy—crafting a unique niche that advances both fundamental science and clinical application. With a promising trajectory ahead, she is set to influence future protocols in neurovascular therapy, offering hope to patients with currently untreatable conditions.

Publication

  • Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies
    Authors: JM Oliveira, L Carvalho, J Silva-Correia, S Vieira, M Majchrzak, …
    Year: 2018

 

  • Advances in bioinks and in vivo imaging of biomaterials for CNS applications
    Authors: EP Oliveira, I Malysz-Cymborska, D Golubczyk, L Kalkowski, …
    Year: 2019

 

  • The role of glia in canine degenerative myelopathy: relevance to human amyotrophic lateral sclerosis
    Authors: D Golubczyk, I Malysz-Cymborska, L Kalkowski, M Janowski, JR Coates, …
    Year: 2019

 

  • Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions
    Authors: S Vieira, P Strymecka, L Stanaszek, J Silva-Correia, K Drela, …
    Year: 2020

 

  • MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals
    Authors: I Malysz-Cymborska, D Golubczyk, L Kalkowski, A Burczyk, M Janowski, …
    Year: 2018

 

  • Endovascular model of ischemic stroke in swine guided by real-time MRI
    Authors: D Golubczyk, L Kalkowski, J Kwiatkowska, M Zawadzki, P Holak, J Glodek, …
    Year: 2020

 

  • Expression of the vascular endothelial growth factor receptor system in porcine oviducts after induction of ovulation and superovulation
    Authors: I Małysz-Cymborska, A Andronowska
    Year: 2014

 

  • Rabbit model of human gliomas: implications for intra-arterial drug delivery
    Authors: H Qin, M Janowski, MS Pearl, I Malysz-Cymborska, S Li, CG Eberhart, …
    Year: 2017

 

  • Two in one: use of divalent manganese ions as both cross-linking and MRI contrast agent for intrathecal injection of hydrogel-embedded stem cells
    Authors: L Kalkowski, D Golubczyk, J Kwiatkowska, P Holak, K Milewska, …
    Year: 2021

 

  • Effect of hCG and eCG treatments on Prostaglandins Synthesis in the Porcine Oviduct
    Authors: I Małysz‐Cymborska, AJ Ziecik, A Waclawik, A Andronowska
    Year: 2013

 

🧾 Conclusion

Dr. Małysz-Cymborska’s career reflects a compelling fusion of scientific curiosity, clinical relevance, and academic rigor. With notable achievements in regenerative medicine and translational neuroscience, she continues to shape the future of therapeutic interventions for complex neurological disorders. Her ongoing research promises to pave the way for advanced stroke treatments and immune-based neurotherapies, cementing her role as a key contributor to modern biomedical science.

Joice Margareth de Almeida Rodolpho | Molecular Neuroscience | Best Researcher Award

Mrs. Joice Margareth de Almeida Rodolpho | Molecular Neuroscience | Best Researcher Award

Mrs. Joice Margareth de Almeida Rodolpho, Universidade Federal de São Carlos, Brazil.

Joice Margareth de Almeida Rodolpho is a dedicated Brazilian researcher with a strong foundation in biotechnology, parasitology, immunology, and molecular biology. She earned her Master’s and Ph.D. from the Federal University of São Carlos (UFSCar), where she explored the role of eosinophils as antigen-presenting cells in parasitic infections like Toxocara canis and Schistosoma mansoni. Her work is recognized for integrating experimental immunology with therapeutic innovations, such as the evaluation of natural plant extracts and nanomaterials for infection control. She further specialized in Flow Cytometry and Oncohematology, enhancing her analytical capabilities. With multiple awards and citations, her impactful contributions continue to strengthen Brazil’s standing in parasitological and immunological research.

Profile

Orcid

🎓 Early Academic Pursuits

Joice Margareth de Almeida Rodolpho began her academic journey in Brazil, developing a strong foundation in the life sciences. Her early interest in molecular biology and parasitology led her to pursue advanced studies at the esteemed Universidade Federal de São Carlos (UFSCar). She earned her Master’s degree in Biotechnology between 2009 and 2012, conducting significant research on Toxocara canis, particularly on the phenotypic characterization of eosinophils as antigen-presenting cells. This early work not only revealed her meticulous scientific inquiry but also laid the groundwork for her deeper exploration into immunology.

🧬 Professional Endeavors in Molecular and Evolutionary Genetics

Driven by a passion for understanding immune responses, Joice pursued a Ph.D. in Evolutionary Genetics and Molecular Biology at UFSCar from 2013 to 2017. Her doctoral research focused on the role of eosinophils as antigen-presenting cells both in vitro and ex vivo, offering vital insights into host-parasite interactions and immune regulation. Her work during this period was supported by a prestigious FAPESP scholarship, demonstrating her academic excellence and the relevance of her contributions. Under the mentorship of Professor Fernanda de Freitas Anibal, Joice refined her skills in experimental immunology and cellular biology.

🧪 Contributions and Research Focus in Parasitology and Immunopathology

Joice Rodolpho’s primary research interests lie at the intersection of parasitology, cellular immunology, and experimental pathology. Her studies explore how parasitic infections, such as those caused by Schistosoma mansoni and Toxocara canis, affect immune cell function, especially eosinophils. She has also contributed to investigations into natural plant extracts, like Mentha piperita L., assessing their therapeutic potential in modulating parasitic infections. Moreover, she extended her expertise to the field of nanomaterials, evaluating the cytotoxicity and cell death mechanisms induced by compounds like Ag₂WO₄, thus bridging classical parasitology with emerging biomedical technologies.

🏅 Accolades and Recognition in Scientific Circles

Throughout her career, Joice has received several recognitions that reflect the impact and originality of her research. In 2010, she was honored with a Menção Honrosa (Honorable Mention) for her work on Mentha piperita L. in treating Schistosoma mansoni, earning 2nd place in diagnostics and treatment. She continued to gain academic acclaim with awards at major conferences, including the VI Congresso da Sociedade Paulista de Parasitologia (2012) and the XXII B-MRS Meeting in 2024, highlighting her work on cytotoxic responses and innovative parasitological control methods. In 2024, her project on the parasitological and pathological evaluation of AW-HRL-C for schistosomiasis control was notably recognized by UNIFESP.

🧠 Impact and Influence in Experimental Immunology

Joice’s dedication to experimental immunology and cytometry has allowed her to mentor and influence upcoming researchers, especially in specialized fields such as flow cytometry. Her recent specialization in Immunology and Oncohematology by Flow Cytometry (2021–2022) at IPESSP further enriched her profile, showcasing her commitment to continuous learning and application of advanced technologies in immune profiling. Her ability to merge classical immunopathology with state-of-the-art cytometric tools reflects her versatility and forward-thinking scientific approach.

🌱 Legacy and Future Contributions in Biomedical Science

Poised to make lasting contributions, Joice Margareth de Almeida Rodolpho stands at the forefront of research into host-pathogen interactions, parasitic disease management, and immune cell function modulation. Her unique interdisciplinary approach—integrating molecular biology, natural product pharmacology, and immunological techniques—positions her as a valuable contributor to both academic research and potential therapeutic advancements. She is expected to lead innovative research in the treatment of neglected tropical diseases and immunological disorders, with implications for global health.

🔬 Research Field Relevance and Scientific Identity

As a scholar deeply embedded in the Brazilian scientific ecosystem, Joice’s identity is reflected in her multiple citation forms, indicating her widespread academic collaborations and international visibility. Her expertise bridges evolutionary genetics, biotechnology, cytometry, and immunoparasitology—making her a multifaceted researcher. Her contributions are cited under various names such as “RODOLPHO, JOICE M. A.” and “Joice Margareth de Almeida Rodolpho,” reflecting a robust presence in scholarly literature and ensuring her work continues to guide parasitological and immunological research for years to come.

Publication

  • Title: Biomarkers and Mental Disorders: A Relevance Analysis Using a Random Forest Algorithm
    Authors: Joice M. A. Rodolpho; Krissia F. Godoy; Bruna D. L. Fragelli; Jaqueline Bianchi; et al.
    Year: 2025

 

  • Title: Death Risk Score Model of Hospitalized COVID‐19 Patients: A Cohort Study
    Authors: Gustavo A. Cruz; Thais B. Boteon; Henrique Pott; Joice M. A. Rodolpho; et al.
    Year: 2025

 

  • Title: Synergistic Antifungal Effect and In Vivo Toxicity of a Monoterpene Isoespintanol Obtained from Oxandra xylopioides Diels
    Authors: Orfa I. C. Martínez; Alberto Angulo; Joice Rodolpho; Krissia F. Godoy; et al.
    Year: 2024

 

  • Title: Synergistic Antifungal Effect and In Vivo Toxicity of the Monoterpene Isoespintanol Obtained from Oxandra xylopioides Diels (Preprint)
    Authors: Orfa I. C. Martínez; Alberto Angulo; Joice M. A. Rodolpho; et al.
    Year: 2024

 

  • Title: Carbon Black CB-EDA Nanoparticles in Macrophages: Changes in the Oxidative Stress Pathway and in Apoptosis Signaling
    Authors: Joice M. A. Rodolpho; Krissia F. Godoy; Bruna D. L. Fragelli; et al.
    Year: 2023

 

  • Title: HGPRT and PNP: Recombinant Enzymes from Schistosoma mansoni and Their Role in Immunotherapy during Experimental Murine Schistosomiasis
    Authors: Bruna D. L. Fragelli; Ana C. Fattori; Joice M. A. Rodolpho; et al.
    Year: 2023

 

  • Title: Titanium Dioxide Nanoparticle (TiO2 NP) Induces Toxic Effects on LA-9 Mouse Fibroblast Cell Line
    Authors: Ana C. M. Fattori; Patricia Brassolatti; Joice M. A. Rodolpho; et al.
    Year: 2023

 

  • Title: Analysis of Cytotoxicity and Genotoxicity in a Short-Term Dependent Manner Induced by a New Titanium Dioxide Nanoparticle in Murine Fibroblast Cells
    Authors: Pedrino, M.; Brassolatti, P.; Joice M. A. Rodolpho; et al.
    Year: 2022

 

  • Title: Functionalized Titanium Nanoparticles Induce Oxidative Stress and Cell Death in Human Skin Cells
    Authors: Brassolatti, P.; Joice M. A. Rodolpho; Krissia F. Godoy; et al.
    Year: 2022

 

  • Title: Toxicological Effects of the Mixed Iron Oxide Nanoparticle (Fe₃O₄ NP) on Murine Fibroblasts LA-9
    Authors: Alves Feitosa, K.; Joice M. A. Rodolpho; et al.
    Year: 2022

 

🧾 Conclusion

Joice Rodolpho’s academic journey and scientific contributions reveal a researcher of high caliber, committed to advancing our understanding of host-pathogen dynamics and immune system function. Her work, grounded in rigorous experimentation and innovation, holds promise for developing novel therapies for neglected tropical diseases. With a forward-looking approach and interdisciplinary expertise, she stands out as a key contributor in biomedical science, poised to influence future discoveries in immunopathology and disease control.

Sukesh Sinha | Neuropharmacology | Lifetime achievement Award

Prof. Dr. Sukesh Sinha | Neuropharmacology | Lifetime achievement Award

Prof. Dr. Sukesh Sinha,  National Institute of Nutrition-ICMR, India.

Dr. Sukesh Narayan Sinha, a seasoned toxicologist and research leader, has dedicated his career to advancing the fields of food safety, drug toxicology, pesticide toxicology, and pharmacology. Starting with a strong academic foundation in chemistry from Bihar University, he honed his expertise further through international training at the University of Helsinki and the CDC in the USA. Rising through the ranks of India’s premier health research institutions under the ICMR, Dr. Sinha’s career spans critical research roles that have directly impacted national health and safety policies. His global collaborations and leadership roles reflect a career built on scientific rigor, public service, and continuous learning.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Born on January 3rd, 1965, Dr. Sukesh Narayan Sinha’s academic journey began with a profound interest in the field of chemistry. He earned his B.Sc. Honours in Chemistry in 1989, followed by an M.Sc. in Chemistry in 1993, and later a Ph.D. in Chemistry in 1999—all from Bihar University, Muzaffarpur. His pursuit of advanced scientific knowledge extended internationally, where he underwent specialized analytical skill development in toxicology at the University of Helsinki, Finland. These foundational years cemented his passion for chemical and toxicological research, shaping the path for a distinguished career in public health and environmental safety.

🧪 Professional Endeavors in Toxicology

Dr. Sinha’s career has been marked by continuous progression through India’s foremost medical and research institutions under the Indian Council of Medical Research (ICMR). Beginning as a Research Fellow at the National Institute of Malaria Research, he moved into industry as a Research Scientist at Alkame Laboratory. His return to the ICMR system in 2001 marked the beginning of a steady ascent through scientific ranks—from Scientist-B to his current post as Senior Grade Deputy Director (Scientist-F) at the ICMR-National Institute of Nutrition (NIN), Hyderabad. He also held key roles at the ICMR-National Institute of Occupational Health, contributing immensely to occupational and environmental health research.

🧬 Contributions and Research Focus

Specializing in Food Toxicology, Drug Research & Toxicology, Pesticide Toxicology, and Pharmacology, Dr. Sinha has focused on identifying and mitigating chemical risks in food and the environment. His work has had a direct impact on public health safety standards in India. Through advanced analytical techniques and interdisciplinary collaboration, he has played a central role in guiding policy and regulatory frameworks concerning food safety. His expertise has not only contributed to toxicological research but has also enhanced national capacities in monitoring hazardous substances affecting human health.

🌍 Global Collaborations and Scientific Exposure

Dr. Sinha’s vision and research have reached global platforms. Notably, he served as a Visiting Scientist at the University of Cincinnati, USA, where he collaborated with experts in Environmental Health. He also completed two intensive courses on health and safety under the Centers for Disease Control and Prevention (CDC) in Atlanta, USA. These international exposures have enriched his scientific perspective, enabling him to incorporate global best practices into India’s health safety frameworks and toxicology research protocols.

🏅 Accolades and Recognition

Throughout his career, Dr. Sinha has earned recognition for his commitment and excellence in scientific research. While specific awards are not listed, his steady promotion within the ICMR ranks—from Scientist-B to Scientist-F—reflects institutional trust in his capabilities and leadership. His selection as a visiting scientist abroad and participation in elite training programs also underscore his status as a respected voice in toxicology and public health research.

📢 Impact and Influence on Public Health

Through his extensive research and governmental role, Dr. Sinha has contributed to national strategies on food safety and toxic substance regulation. His input influences decisions affecting millions of citizens, especially in areas related to food contaminants, drug residues, and environmental pollutants. He continues to serve as a bridge between laboratory research and real-world applications that safeguard public health in India.

🔬 Legacy and Future Contributions

Dr. Sinha’s legacy lies in his unwavering commitment to science and service. With decades of experience and an expanding portfolio of national and international collaborations, he is poised to continue influencing future research, shaping young scientific minds, and contributing to India’s health security. His role at ICMR-NIN ensures that his insights and leadership will guide public health policies and toxicology advancements for years to come.

Publication

  • Quantification of organophosphate insecticides and herbicides in vegetable samples using the “Quick Easy Cheap Effective Rugged and Safe” (QuEChERS) method and a high …
    SN Sinha, K Vasudev, MVV Rao2012

 

  • Distribution of pesticides in different commonly used vegetables from Hyderabad, India
    SN Sinha, MVV Rao, K Vasudev2012

 

  • Air pollution from solid fuels.
    SN Sinha, PK Nag2011

 

  • Environmental monitoring of benzene and toluene produced in indoor air due to combustion of solid biomass fuels
    SN Sinha, PK Kulkarni, SH Shah, NM Desai, GM Patel, MM Mansuri, …2006

 

  • Repeated episodes of endosulfan poisoning
    A Dewan, VK Bhatnagar, ML Mathur, T Chakma, R Kashyap, HG Sadhu, …2004

 

  • Effect of dissociation energy on ion formation and sensitivity of an analytical method for determination of chlorpyrifos in human blood, using gas chromatography–mass …
    SN Sinha, R Pal, A Dewan, MM Mansuri, HN Saiyed2006

 

  • A novel method for pesticide analysis in refined sugar samples using a gas chromatography–mass spectrometer (GC–MS/MS) and simple solvent extraction method
    SN Sinha, VK Bhatnagar, P Doctor, GS Toteja, NP Agnihotri, RL Kalra2011

 

  • A liquid chromatography mass spectrometry-based method to measure organophosphorous insecticide, herbicide and non-organophosphorous pesticide in grape and apple samples
    SN Sinha, MVV Rao, K Vasudev, M Odetokun2012

 

  • Quantification of organophosphate insecticides in drinking water in urban areas using lyophilization and high-performance liquid chromatography–electrospray ionization-mass …
    SN Sinha, K Vasudev, MVV Rao, M Odetokun2011

 

  • Inhibition of protein glycation by procyanidin‐B2 enriched fraction of cinnamon: delay of diabetic cataract in rats
    P Muthenna, G Raghu, C Akileshwari, SN Sinha, P Suryanarayana, …2013

 

🏁 Conclusion

Dr. Sukesh Narayan Sinha stands as a respected figure in India’s scientific community, with an enduring impact on toxicology research and public health safety. His career reflects a seamless integration of deep scientific knowledge, practical application, and international collaboration. As he continues his service at ICMR-NIN, his contributions promise to leave a lasting legacy in strengthening food safety standards, environmental health, and public policy for future generations. Dr. Sinha’s journey inspires commitment to research excellence and exemplifies the profound role of science in safeguarding society.