Alex Armstrong | Systems Neuroscience | Young Scientist Award

Mr. Alex Armstrong | Systems Neuroscience | Young Scientist Award

Mr. Alex Armstrong, University of Illinois, Urbana-Champaign, United States.

Alex Armstrong is an emerging leader in the field of systems neuroscience with a rich academic background and a global research footprint. Starting with a strong foundation in pharmacology from the University of Manchester and early research experience in China, he has built an interdisciplinary career that bridges experimental, computational, and translational neuroscience. His Ph.D. work at the University of Illinois Urbana-Champaign, under the guidance of Prof. Yurii Vlasov, focuses on the neural mechanisms of perceptual decision-making using innovative tools like tactile virtual reality and localized lesioning techniques. He has also played integral roles in teaching, mentoring, and collaborative NIH-funded research involving cutting-edge neural probes. His contributions span from fundamental neuroscience to neuroengineering, with multiple international presentations and a growing reputation in both academic and applied research communities.

Profile

Google Scholar

🎓 Early Academic Pursuits

Alex Armstrong’s journey into the world of neuroscience began with a strong academic foundation in Pharmacology at the University of Manchester, where he earned a BSc (Honors) degree in 2017. During his undergraduate studies, he delved into the neural effects of psychoactive substances, leading a research project examining the influence of various drugs on receptive fields in the rat lateral geniculate nucleus. His academic curiosity was not confined to the lab; Alex actively mentored disadvantaged youth in science and mathematics through the CityWise charity, demonstrating an early commitment to both education and societal impact. His academic appetite took a global turn when he received a competitive scholarship to Nanjing Medical University in China. There, he shadowed urologists and contributed to prostate cancer research by processing tumor samples and supporting manuscript preparation under the mentorship of Dr. Jian Lin. This early immersion into translational research laid the groundwork for his future endeavors in systems neuroscience.

🧠 Research Focus and Innovation

Currently pursuing his Ph.D. at the University of Illinois Urbana-Champaign, Alex Armstrong is at the forefront of neuroscience research under the mentorship of Professor Yurii Vlasov, a member of the National Academy of Engineering. His research seeks to unravel the neural underpinnings of perceptual decision-making using advanced technologies. Alex has pioneered the development of a novel tactile virtual reality system tailored for mice, enabling precise behavioral and neural investigations in ecologically valid scenarios. His contributions also include designing a localized lesioning technique to dissect the causal roles of specific cortical regions with unmatched spatial and temporal resolution. This work reflects his deep integration of behavior, electrophysiology, histology, and computational modeling — a rare confluence of skills that pushes the boundaries of systems neuroscience.

🔬 Professional Endeavors and Laboratory Leadership

Alex’s career includes impactful positions across globally renowned institutions. Prior to his doctoral studies, he served as a Research Technician at University College London, working in auditory neuroscience labs with PIs Jennifer Linden and Nicholas Lesica. There, he independently managed experiments related to auditory perception and hearing aid technology, leading both behavioral training and neural recordings. At UIUC, his laboratory involvement extends beyond individual research: he performs surgeries, manages mouse colonies, trains new graduate and undergraduate researchers, and leads collaborative NIH-funded projects investigating simultaneous electrical and chemical neural activity during seizures. Alex is a dependable pillar in the lab, bridging experiment and innovation through hands-on mentorship and project leadership.

🏆 Accolades and Recognition

Alex’s academic and scientific contributions have been recognized at multiple levels. He has presented his work through nine conference talks and poster presentations at premier forums including Barrels, the Society for Neuroscience, and AREADNE between 2021 and 2024. His visibility within the academic community extends to teaching, where he was entrusted as a Teaching Assistant for the competitive Neural Interface Engineering course (ECE421) in 2024 and 2025, guiding over 50 students through workshops, lessons, and exam reviews. His role on the UIUC neuroscience seminar committee in 2022 further demonstrated his leadership in promoting interdisciplinary dialogue, as he invited top neuroscientists from across the world to contribute to the university’s vibrant intellectual atmosphere.

🧪 Scientific Contributions and Methodological Advancements

One of Alex Armstrong’s most significant contributions lies in his ability to blend experimental neuroscience with computational modeling. His proficiency spans advanced analytical methods including Generalized Linear Models (GLM), Drift Diffusion Models (DDM), Dimensionality Reduction, and DyNetCP, positioning him at the intersection of theory and practice. His work not only provides high-resolution insights into brain function but also informs the design of next-generation neural interface devices. His leadership in testing novel neural probes capable of simultaneously recording both electrical and chemical signals underlines his commitment to tool development in neuroscience — a field critical to brain–machine interface technologies and precision neuromodulation.

🌍 Impact and Influence

Alex Armstrong’s research has both immediate and long-term scientific value. By enhancing our understanding of the cortical mechanisms underlying decision-making, his work informs the broader fields of psychology, cognitive science, and artificial intelligence. His contributions to probe testing during seizure dynamics have implications for epilepsy research, potentially opening doors for better diagnostics and treatment strategies. Furthermore, his global academic experience — spanning the U.K., U.S., and China — contributes to his inclusive scientific perspective and ability to work across cultural and institutional boundaries. He has not only advanced science but also nurtured future researchers through consistent mentoring and training roles.

🚀 Legacy and Future Contributions

Looking ahead, Alex Armstrong is poised to become a leading figure in systems neuroscience, particularly in decoding the neural basis of cognition and behavior. With a solid foundation in experimentation, programming, and tool development, he is uniquely equipped to tackle the grand challenges of brain science in the 21st century. His efforts are steadily laying a legacy of open, interdisciplinary research, bridging the biological and engineering aspects of neuroscience. Whether through innovative VR paradigms for animal behavior, high-density probe validation, or collaborative research across continents, Alex continues to pave the way for future breakthroughs in understanding the human brain.

Publication

  • Title: Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer
    Authors: JZ Lin, ZJ Wang, W De, M Zheng, WZ Xu, HF Wu, A Armstrong, JG Zhu
    Year: 2017

 

  • Title: Compression and amplification algorithms in hearing aids impair the selectivity of neural responses to speech
    Authors: AG Armstrong, CC Lam, S Sabesan, NA Lesica
    Year: 2022

 

  • Title: The hearing aid dilemma: amplification, compression, and distortion of the neural code
    Authors: A Armstrong, CC Lam, S Sabesan, NA Lesica
    Year: 2020

 

  • Title: Nonlinear sensitivity to acoustic context is a stable feature of neuronal responses to complex sounds in auditory cortex of awake mice
    Authors: M Akritas, AG Armstrong, JM Lebert, AF Meyer, M Sahani, JF Linden
    Year: 2024

 

  • Title: Contextual modulation is a stable feature of the neural code in auditory cortex of awake mice
    Authors: M Akritas, AG Armstrong, JM Lebert, AF Meyer, M Sahani, JF Linden
    Year: 2023

 

  • Title: Neuropeptides in the Extracellular Space of the Mouse Cortex Measured by Nanodialysis Probe Coupled with LC-MS
    Authors: K Li, W Shi, Y Tan, Y Ding, A Armstrong, Y Vlasov, J Sweedler
    Year: 2025

 

  • Title: Neural correlates of perceptual decision making in primary somatosensory cortex
    Authors: A Armstrong, Y Vlasov
    Year: 2025

 

  • Title: Perceptual decision-making during whisker-guided navigation causally depends on a single cortical barrel column
    Authors: AG Armstrong, Y Vlasov
    Year: 2025

 

 

Conclusion

Alex Armstrong exemplifies the next generation of neuroscientists—technically skilled, globally experienced, and intellectually versatile. His ability to merge behavioral neuroscience with advanced computational tools and engineering innovations positions him at the forefront of brain research. As he continues to contribute to our understanding of neural dynamics and brain–machine interfaces, Alex is set to leave a lasting impact on neuroscience and its applications in medicine and technology. His trajectory reflects not just scientific excellence, but also a commitment to mentorship, interdisciplinary collaboration, and innovation-driven discovery.

Chen Shoubin | Behavioral Neuroscience | Best Researcher Award

Dr. Chen Shoubin | Behavioral Neuroscience | Best Researcher Award

Dr. Chen Shoubin, Shenzhen University,  China.

Dr. Shoubin Chen is a forward-thinking Research Fellow at the Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), affiliated with Shenzhen University. With a Ph.D. in Photogrammetry and Remote Sensing, his career has been rooted in the intersection of spatial intelligence, robotics, and AI. From leading national research projects to publishing in reputable journals and securing multiple invention patents, Dr. Chen has made substantial contributions to the field of embodied intelligent robotics. His research emphasizes multi-sensor fusion and autonomous mapping, aiming to give machines human-like spatial perception and decision-making capabilities.

Profile

Google Scholar

 

📚 Early Academic Pursuits

Shoubin Chen’s academic journey began with a strong foundation in geospatial sciences, culminating in a Ph.D. in Photogrammetry and Remote Sensing in 2020. This prestigious degree was awarded through a rigorous joint training program between Wuhan University and the Finnish Geospatial Research Institute. During his doctoral studies, he developed a deep interest in integrating advanced spatial data techniques with artificial intelligence, laying the groundwork for his future research endeavors. His early academic phase was marked by a commitment to cross-border scientific collaboration and multidisciplinary exploration, which has since defined his research approach.

🧑‍💻 Professional Endeavors

Currently serving as a Research Fellow and graduate supervisor at the Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen) and Shenzhen University, Dr. Chen plays a pivotal role in advancing embodied intelligence within the Spatial Intelligence Team. His responsibilities include mentoring postgraduate students, overseeing cutting-edge research, and steering major national and provincial scientific projects. He has contributed to several national-level initiatives, including two National Natural Science Foundation of China grants, support from the China Postdoctoral Science Foundation, and sub-projects under the National Key Research and Development Program. These experiences have sharpened his expertise in high-precision robotic mapping and autonomous navigation.

🤖 Contributions and Research Focus

Dr. Chen’s primary research focus lies in embodied intelligent robotics, with an emphasis on multi-sensor fusion, robotic perception, and spatial mapping technologies. He is recognized for integrating data from various sensing modalities to improve the autonomy and spatial awareness of robotic systems. His innovations aim to empower robots with human-like spatial understanding, allowing them to operate reliably in complex environments. This research direction is crucial for applications ranging from autonomous vehicles to intelligent service robots, contributing significantly to the frontier of AI-driven robotics.

🏅 Accolades and Recognition

Throughout his academic and professional career, Shoubin Chen has garnered considerable recognition for his scientific excellence. He has published nearly ten high-quality papers as either the first or corresponding author in SCI Q2 journals and CCF B-tier or higher conferences and journals. Moreover, he has applied for over ten invention patents, underscoring his commitment to both theoretical advancement and practical application. His reputation in the academic community is further highlighted by his service as a peer reviewer for prestigious platforms such as the IEEE Internet of Things Journal, Remote Sensing of Environment, IEEE Transactions on Intelligent Vehicles, and ICRA, one of the top robotics conferences globally.

🌐 Impact and Influence

Dr. Chen’s work has had a profound impact on the fields of AI, robotics, and spatial computing. His multi-disciplinary approach has influenced how robots understand and interact with their environments, offering transformative possibilities in smart cities, autonomous transport, and digital mapping. By fusing photogrammetry with robotics and AI, he has contributed to a new paradigm in spatial intelligence that bridges digital perception and physical action. His projects have not only generated academic outputs but have also driven technological innovations with potential for real-world deployment.

🌱 Legacy and Future Contributions

As a mentor, innovator, and research leader, Shoubin Chen continues to inspire the next generation of scientists and engineers in AI and robotics. His forward-looking vision involves deepening the integration of embodied intelligence with environmental understanding, enabling machines to collaborate more intuitively with humans. He is poised to expand his research to include human-robot interaction, sustainable urban intelligence, and smart sensing systems. With a growing portfolio of publications, patents, and mentorship experiences, his contributions are set to leave a lasting legacy in the development of intelligent systems that seamlessly bridge perception and action.

🔬 Vision in Artificial Intelligence and Robotics

Guided by a vision that combines spatial science with artificial cognition, Dr. Chen’s work embodies the future of AI-powered robotics. His pursuit of intelligent, context-aware robotic systems aligns with global goals in automation, smart infrastructure, and digital economy. As AI becomes increasingly pervasive in everyday life, his contributions are steering the technology toward safer, more efficient, and more interactive systems. Through continuous innovation and collaboration, he remains at the forefront of a transformative research frontier that blends engineering precision with visionary thinking.

Publication

  • Title: Exploring embodied multimodal large models: Development, datasets, and future directions
    Authors: S Chen, Z Wu, K Zhang, C Li, B Zhang, F Ma, FR Yu, Q Li
    Year: 2025

 

  • Title: Distributed Robust Communication-Efficient Multi-Robot SLAM Combining Real-Time Intersection and Historical Loop Constraints
    Authors: B Zhang, Z Xiong, J Qiu, S Chen, Y Hu, S Chen
    Year: 2025

 

  • Title: TextGeo-SLAM: A LiDAR SLAM With Text Semantics and Geometric Constraints-Based Loop Closure
    Authors: S Chen, C Li, Q Jiang, X Zhuang, B Zhang, B Zhou, Q Li
    Year: 2024

 

  • Title: ASL-SLAM: A LiDAR SLAM with activity semantics-based loop closure
    Authors: B Zhou, C Li, S Chen, D Xie, M Yu, Q Li
    Year: 2023

 

  • Title: Comparative analysis of SLAM algorithms for mechanical LiDAR and solid-state LiDAR
    Authors: B Zhou, D Xie, S Chen, H Mo, C Li, Q Li
    Year: 2023

 

  • Title: Research on SLAM based on LiDAR/visual fusion (LV-SLAM)
    Authors: C Shoubin
    Year: 2023

 

  • Title: Cooperative smartphone GNSS/PDR for pedestrian navigation
    Authors: C Jiang, Y Chen, C Chen, S Chen, Q Meng, Y Bo, J Hyyppa
    Year: 2022

 

  • Title: Indoor Attitude Estimation Using Equipped Gyroscopes and Depth Sensors
    Authors: Q Shi, Z Song, Z Xiao, S Chen, F Wang
    Year: 2022

 

  • Title: LI-SLAM: Fusing LiDAR and Infrared Camera for Simultaneous Localization and Mapping
    Authors: B Zhou, D Xie, S Chen, C Li, H Mo
    Year: 2022

 

  • Title: NDT-LOAM: A real-time LiDAR odometry and mapping with weighted NDT and LFA
    Authors: S Chen, H Ma, C Jiang, B Zhou, W Xue, Z Xiao, Q Li
    Year: 2021

 

✅ Conclusion

In conclusion, Dr. Shoubin Chen exhibits all the core qualities of a Best Researcher Award recipient: deep scientific insight, proven research leadership, strong publication and patent output, and a visionary approach to solving real-world problems through AI and robotics. While there are opportunities to grow his international footprint, his current accomplishments already place him among the leading young researchers in his field. Based on the evidence of impact, innovation, and research excellence, he is highly suitable for the Best Researcher Award.

Jin Yong Hong | Behavioral Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Jin Yong Hong | Behavioral Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Jin Yong Hong,  Yonsei University Wonju College of Medicine,  South Korea.

Dr. Jin Yong Hong, MD, PhD, is a distinguished neurologist and academic leader with a career grounded in excellence, innovation, and service. Beginning his medical education at Yonsei University, he steadily advanced through rigorous academic and clinical pathways to become an Associate Professor at Yonsei University Wonju College of Medicine. His focused expertise in movement disorders and dementia, enriched by both national and international research experience, especially at the University of Pennsylvania, highlights his dedication to solving complex neurological diseases. Through teaching, research, and clinical practice, he has significantly contributed to the growth of neuroscience and medical education in South Korea.

 

Profile

Google Scholar

Orcid

 

🎓 Early Academic Pursuits

Dr. Jin Yong Hong embarked on his journey in medicine with a deep commitment to academic excellence, beginning with his premedical studies at Yonsei University in Seoul from 2001 to 2003. He swiftly advanced through the rigorous medical curriculum, earning a Bachelor of Medical Science in 2007. Not content with just clinical practice, he pursued higher education with a Master of Medical Science completed in 2014 and culminated his scholarly journey with a Doctorate in Medical Science from the same esteemed institution in 2021. His academic path reflects a relentless pursuit of knowledge in the neurological sciences and a strong foundation in research methodology and clinical application.

🧠 Professional Endeavors in Neurology

Following his graduation, Dr. Hong immersed himself in hands-on clinical training, beginning with an internship and residency in Neurology at the renowned Severance Hospital of the Yonsei University Health System. This period, from 2007 to 2012, was marked by rigorous clinical immersion and specialization. His passion for neuroscience led him to pursue subspecialty training in Movement Disorders and Dementia, completing both clinical and research fellowships. Notably, he expanded his research exposure internationally through a postdoctoral fellowship at the University of Pennsylvania in the United States from 2022 to 2024, further enriching his expertise in neurodegenerative pathology and laboratory medicine.

🔬 Contributions and Research Focus

Dr. Hong’s research has consistently revolved around movement disorders and dementia, placing him at the forefront of understanding neurodegenerative diseases. His clinical experience, paired with extensive research work in both Korea and the United States, underscores his commitment to unraveling the complexities of disorders like Parkinson’s disease, Alzheimer’s disease, and related cognitive impairments. His interdisciplinary approach bridges clinical neurology with translational science, contributing significantly to advancing diagnostic and therapeutic strategies in the field.

🏥 Academic Leadership and Teaching

As an Associate Professor at the Department of Neurology, Yonsei University Wonju College of Medicine, Dr. Hong plays a vital role in shaping the next generation of neurologists. Since 2016, he has not only led clinical initiatives but also mentored students and junior faculty. His previous tenure as a Clinical Assistant Professor from 2014 to 2016 helped lay the groundwork for a collaborative and research-driven academic environment at the Wonju Severance Christian Hospital. His academic roles have helped blend clinical excellence with cutting-edge research in one of Korea’s premier medical institutions.

🏅 Accolades and Recognition

Dr. Hong’s excellence has been consistently recognized by peers and institutions alike. In 2014, he received the Academic Award for Highest Achievement from Yonsei University College of Medicine, marking him as a top-tier scholar among his peers. The same year, he was awarded a Fellowship by the Korean Movement Disorder Society, acknowledging his promising contributions to the field. Further cementing his role as a leading voice in neurological research, he was honored in 2021 with the JMD Article Award, reflecting the impact and relevance of his scholarly publications.

🌍 Impact and Influence in Neurological Science

With active memberships in the Korean Neurological Association, the Korean Movement Disorder Society, and the Korean Dementia Association, Dr. Hong maintains an influential presence within the scientific community. His cross-continental experience, especially through his postdoctoral work in the United States, has positioned him as a bridge between Eastern and Western neurological research paradigms. His publications and ongoing collaborations continue to influence both clinical practice and academic discourse, especially in the diagnosis and management of neurodegenerative conditions.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Jin Yong Hong is poised to continue making groundbreaking contributions in the field of neurology. With a career marked by academic distinction, clinical expertise, and research innovation, he represents a model of holistic excellence in medicine. His future work is likely to delve deeper into translational neuroscience, aiming to develop practical solutions for patients suffering from movement and cognitive disorders. As a mentor, researcher, and clinician, Dr. Hong is building a legacy that will inspire and influence the medical community for years to come.

Publication

  • Neuroanatomical substrates of visual hallucinations in patients with non-demented Parkinson’s disease
    S Shin, JE Lee, JY Hong, MK Sunwoo, YH Sohn, PH Lee
    2012

 

  • Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease
    JY Hong, JS Oh, I Lee, MK Sunwoo, JH Ham, JE Lee, YH Sohn, JS Kim, …
    2014

 

  • The MMSE and MoCA for screening cognitive impairment in less educated patients with Parkinson’s disease
    JI Kim, MK Sunwoo, YH Sohn, PH Lee, JY Hong
    2016

 

  • The burden of white matter hyperintensities is a predictor of progressive mild cognitive impairment in patients with Parkinson’s disease
    MK Sunwoo, S Jeon, JH Ham, JY Hong, JE Lee, JM Lee, YH Sohn, …
    2014

 

  • Cerebral microbleeds in patients with Parkinson’s disease
    JH Ham, H Yi, MK Sunwoo, JY Hong, YH Sohn, PH Lee
    2014

 

  • Subjective cognitive decline predicts future deterioration in cognitively normal patients with Parkinson’s disease
    JY Hong, MK Sunwoo, SJ Chung, JH Ham, JE Lee, YH Sohn, PH Lee
    2014

 

  • Clinical and biomarker characteristics according to clinical spectrum of Alzheimer’s disease (AD) in the validation cohort of Korean Brain Aging Study for the Early Diagnosis …
    J Hwang, JH Jeong, SJ Yoon, KW Park, EJ Kim, B Yoon, JW Jang, HJ Kim, …
    2019

 

  • Subjective cognitive complaints and objective cognitive impairment in Parkinson’s disease
    JY Hong, Y Lee, MK Sunwoo, YH Sohn, PH Lee
    2018

 

  • Neurocognitive and atrophic patterns in Parkinson’s disease based on subjective memory complaints
    JY Hong, JE Lee, YH Sohn, PH Lee
    2012

 

  • Telomere shortening reflecting physical aging is associated with cognitive decline and dementia conversion in mild cognitive impairment due to Alzheimer’s disease
    SH Koh, SH Choi, JH Jeong, JW Jang, KW Park, EJ Kim, HJ Kim, JY Hong, …
    2020

 

🧾 Conclusion

Dr. Hong’s journey illustrates the profound impact one dedicated individual can make within the scientific and medical communities. His legacy is already evident in his scholarly achievements, the students he mentors, and the patients he serves. As he continues to advance the understanding and treatment of neurological conditions, Dr. Hong remains a beacon of academic integrity, scientific rigor, and compassionate care. His future promises continued breakthroughs that will shape the field of neurology and bring hope to countless lives affected by neurodegenerative disorders.

Hiroshi Yamada | Neuroscience | Excellence in Innovation

Mr. Hiroshi Yamada | Neuroscience | Excellence in Innovation

Mr. Hiroshi Yamada, Medical/Tsukuba, Japan.

H. Yamada, born in Kasugai, Aichi, Japan, has built an impressive academic and professional career in neuroscience. After earning his Bachelor of Science from Tohoku University, he pursued a Master’s degree at Osaka University and later obtained his Ph.D. from Kyoto Prefectural University of Medicine. His research journey took him from postdoctoral studies in Japan to New York University, where he collaborated with renowned neuroscientist Paul W. Glimcher. Returning to Japan, he served as Section Chief at the National Center of Neurology and Psychiatry before joining the University of Tsukuba, where he progressed from Assistant Professor to Associate Professor. His research focuses on neural mechanisms, contributing significantly to neuroscience through both theoretical and practical advancements.

Profile

Google Scholar

🎓 Early Academic Pursuits

H. Yamada’s academic journey reflects a deep-rooted passion for science and medicine. Born on September 9, 1977, in Kasugai, Aichi, Japan, he pursued a Bachelor of Science degree from the Faculty of Science at Tohoku University, graduating in 2000. Driven by a desire to deepen his understanding of human biology, he earned his Master of Arts from the Faculty of Medicine at Osaka University in 2002. His academic pursuits culminated in a Ph.D. from the Graduate School of Kyoto Prefectural University of Medicine in 2005, where he laid the groundwork for his future research in neuroscience.

🧠 Professional Endeavors in Neuroscience

H. Yamada’s professional career began with postdoctoral research at Kyoto Prefectural University of Medicine under the mentorship of Minoru Kimura, focusing on advanced neurological studies. His pursuit of global scientific exposure led him to New York University in 2008, where he worked with renowned neuroscientist Paul W. Glimcher. Upon returning to Japan, Yamada took on a leadership role as Section Chief at the National Center of Neurology and Psychiatry, National Institute of Neuroscience, from 2011. This role was pivotal in shaping his expertise in neurological research, ultimately leading to his tenure as Assistant Professor at the University of Tsukuba in 2013, and later as Associate Professor in 2022.

🔬 Contributions and Research Focus

Throughout his career, H. Yamada has been dedicated to unraveling the complexities of the human brain. His research primarily focuses on neuroscience, exploring neural mechanisms underlying behavior and cognition. At the University of Tsukuba, he has contributed significantly to the understanding of brain functions, merging experimental data with theoretical models to advance the field. His collaborations with international experts have enriched his approach, making his work both diverse and impactful.

🏅 Accolades and Recognition

Yamada’s contributions to neuroscience have earned him recognition within the academic community. His leadership roles and tenured position at the University of Tsukuba reflect his outstanding research and teaching capabilities. His work at prestigious institutions like New York University and the National Center of Neurology and Psychiatry has further solidified his reputation as a respected neuroscientist, contributing to both national and international scientific advancements.

🌍 Impact and Influence

H. Yamada’s research has had a profound impact on the field of neuroscience, influencing both academic circles and clinical practices. His studies on neural behavior have provided insights that bridge the gap between theoretical neuroscience and practical applications, aiding in the development of treatments for neurological disorders. As an educator, he has mentored numerous students, fostering the next generation of neuroscientists.

🚀 Legacy and Future Contributions

Looking ahead, H. Yamada is committed to expanding the horizons of neuroscience through innovative research and global collaborations. His legacy is not only reflected in his published work but also in the students and researchers he has inspired. As he continues his journey at the University of Tsukuba, his focus remains on advancing scientific knowledge and contributing to the global understanding of the human brain.

💡 A Lifelong Dedication to Science

H. Yamada’s life is a testament to the power of curiosity and dedication. From his early academic days in Tohoku to his current role as an Associate Professor, he has consistently pursued excellence in neuroscience. His journey underscores the importance of interdisciplinary research, mentorship, and the relentless quest for knowledge, leaving a lasting mark on the scientific community.

Publication

  • Title: Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action
    Authors: H. Yamada, N. Matsumoto, M. Kimura
    Year: 2004

 

  • Title: Roles of the lateral habenula and anterior cingulate cortex in negative outcome monitoring and behavioral adjustment in nonhuman primates
    Authors: T. Kawai, H. Yamada, N. Sato, M. Takada, M. Matsumoto
    Year: 2015

 

  • Title: Thirst-dependent risk preferences in monkeys identify a primitive form of wealth
    Authors: H. Yamada, A. Tymula, K. Louie, P.W. Glimcher
    Year: 2013

 

  • Title: Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum
    Authors: H. Inokawa, H. Yamada, N. Matsumoto, M. Muranishi, M. Kimura
    Year: 2010

 

  • Title: Free choice shapes normalized value signals in medial orbitofrontal cortex
    Authors: H. Yamada, K. Louie, A. Tymula, P.W. Glimcher
    Year: 2018

 

  • Title: Tonically active neurons in the striatum encode motivational contexts of action
    Authors: M. Kimura, H. Yamada, N. Matsumoto
    Year: 2003

 

  • Title: Tonic firing mode of midbrain dopamine neurons continuously tracks reward values changing moment-by-moment
    Authors: Y. Wang, O. Toyoshima, J. Kunimatsu, H. Yamada, M. Matsumoto
    Year: 2021

 

  • Title: Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events
    Authors: K. Yamanaka, Y. Hori, T. Minamimoto, H. Yamada, N. Matsumoto, et al.
    Year: 2018

 

  • Title: Inactivation of the putamen selectively impairs reward history-based action selection
    Authors: M. Muranishi, H. Inokawa, H. Yamada, Y. Ueda, N. Matsumoto, M. Nakagawa, et al.
    Year: 2011

 

  • Title: Goal-directed, serial and synchronous activation of neurons in the primate striatum
    Authors: M. Kimura, N. Matsumoto, K. Okahashi, Y. Ueda, T. Satoh, T. Minamimoto, et al.
    Year: 2003

 

Conclusion

H. Yamada’s career is a reflection of his dedication to advancing the understanding of the human brain. His academic achievements, leadership roles, and research contributions have left a lasting impact on the neuroscience community. As he continues his work at the University of Tsukuba, his legacy is defined not only by his scientific discoveries but also by his mentorship and influence on future generations of researchers. His journey stands as an inspiring example of the pursuit of knowledge and the transformative power of science.

Rasoul Sabetahd | Systems Neuroscience | Best Researcher Award

Dr. Rasoul Sabetahd | Systems Neuroscience | Best Researcher Award

Dr. Rasoul Sabetahd, Islamic Azad University, Iran.

Dr. Rasoul Sabetahd, a distinguished civil engineer and academic, has dedicated his career to advancing the field of civil engineering through teaching, research, and practical contributions. As a faculty member at the Department of Civil Engineering, Sofian Branch, Islamic Azad University, Iran, he has played a transformative role in fostering innovation, mentoring future engineers, and addressing the pressing challenges of modern infrastructure. His work, rooted in sustainability and resilience, has left a profound impact on academia and the engineering industry alike.

 

profile

Orcid

🌱 Early Academic Pursuits

Dr. Rasoul Sabetahd embarked on his academic journey with an enduring passion for civil engineering. He pursued his foundational studies in this field, demonstrating exceptional aptitude and dedication. His formative years were marked by a deep curiosity about structural systems and an eagerness to contribute to the advancement of infrastructure development. These early academic experiences laid the groundwork for his future scholarly achievements.

🏗️ Professional Endeavors

As a prominent member of the Department of Civil Engineering at the Sofian Branch of Islamic Azad University, Iran, Dr. Sabetahd has played a pivotal role in shaping the academic and professional landscape of civil engineering. His career is characterized by a commitment to teaching, mentoring, and equipping students with the practical and theoretical knowledge necessary for addressing modern engineering challenges. He has also collaborated with industry professionals to bridge the gap between academia and practical applications.

📚 Contributions and Research Focus

Dr. Sabetahd’s research has focused on groundbreaking advancements in civil engineering, including sustainable construction techniques, innovative materials, and structural resilience. Through meticulous studies and publications, he has enriched the academic discourse in civil engineering, providing valuable insights that have been widely acknowledged by peers. His work is deeply rooted in addressing contemporary engineering challenges, contributing significantly to the betterment of urban development and infrastructure planning.

🏆 Accolades and Recognition

Dr. Sabetahd’s dedication and expertise have earned him numerous accolades in the field of civil engineering. His research contributions and commitment to education have been recognized at national and international levels, bringing prestige to his institution and inspiring his colleagues and students. These honors reflect his influence as a leader in his domain.

🌍 Impact and Influence

The impact of Dr. Sabetahd’s work extends far beyond academia. His innovations and methodologies have been adopted in various real-world projects, demonstrating their practical value. As a mentor and educator, he has shaped the careers of countless students who now contribute to the field globally. His ability to blend research with practical applications has solidified his reputation as a transformative figure in civil engineering.

🔗 Legacy and Future Contributions

Dr. Sabetahd’s legacy is defined by his unwavering dedication to advancing civil engineering. Looking ahead, he aims to continue contributing to the field through innovative research, fostering new talent, and promoting sustainable engineering practices. His vision for the future involves not only addressing current challenges but also anticipating the needs of future generations.This biography celebrates the remarkable journey of Dr. Rasoul Sabetahd, highlighting his contributions and the lasting impact he has made in civil engineering.

📚 Publications

  1. Development of an Adaptive Chaotic Fuzzy Neural Network Controller for Mitigating Seismic Response in a Structure Equipped with an Active Tuned Mass Damper
    • Authors: Rasoul Sabetahd, Ommegolsoum Jafarzadeh
    • Year: 2025

 

  1. A Multiple Model Type-3 Fuzzy Control for Offshore Wind Turbines Using the Active Rotary Inertia Driver (ARID)
    • Authors: Chunwei Zhang, Meihua Liu, Zhihu Liu, Rasoul Sabetahd, Hamid Taghavifar, Ardashir Mohammadzadeh
    • Year: 2024

 

  1. Design of a Novel Intelligent Adaptive Fractional-Order Proportional-Integral-Derivative Controller for Mitigation of Seismic Vibrations of a Building Equipped with an Active Tuned Mass Damper
    • Authors: Ommegolsoum Jafarzadeh, Rasoul Sabetahd, Seyyed Arash Mousavi Ghasemi, Seyed Mehdi Zahrai
    • Year: 2024

 

  1. Design of an Online Adaptive Fractional-Order Proportional-Integral-Derivative Controller to Reduce the Seismic Response of the 20-Story Benchmark Building Equipped with an Active Control System
    • Authors: Ommegolsoum Jafarzadeh, Seyyed Arash Mousavi Ghasemi, Seyed Mehdi Zahrai, Rasoul Sabetahd, Ardashir Mohammadzadeh, Ramin Vafaei Poursorkhabi, Vasudevan Rajamohan
    • Year: 2024

 

  1. Response Attenuation of a Structure Equipped with ATMD under Seismic Excitations Using Methods of Online Simple Adaptive Controller and Online Adaptive Type-2 Neural-Fuzzy Controller
    • Authors: Rasoul Sabetahd, Seyed Arash Mousavi Ghasemi, Ramin Vafaei Poursorkhabi, Ardashir Mohammadzadeh, Yousef Zandi
    • Year: 2022

 

  1. Evaluation of Pall Friction Damper Performance in Near-Fault Earthquakes by Using Nonlinear Time History Analysis
    • Authors: Jafarzadeh, K., Lotfollahi-Yaghin, M.A., Sabetahd, R.
    • Year: 2012

 

Conclusion

Dr. Sabetahd’s journey exemplifies the fusion of academic excellence, professional dedication, and impactful research. Through his efforts, he has not only contributed to the growth of civil engineering but also inspired a new generation of engineers to pursue excellence. His legacy, defined by a commitment to progress and innovation, ensures his enduring influence in the field. As he continues his work, Dr. Sabetahd remains a beacon of inspiration, shaping the future of civil engineering.