Alireza Kamali-Asl | Neuroimaging | Best Researcher Award

Prof. Dr. Alireza Kamali-Asl | Neuroimaging | Best Researcher Award

Prof. Dr. Alireza Kamali-Asl | Freelance organization | United Kingdom

Professor Alireza Kamaliasl is a distinguished expert in medical radiation engineering and serves as the Director of the Medical Imaging Instruments Laboratory and Head of Molecular Imaging Modality. With over two decades of experience in healthcare technology and molecular imaging, he has made pioneering contributions to the design, simulation, and manufacture of advanced medical imaging instruments across modalities such as SPECT, PET, CT, and radiography. His interdisciplinary research integrates mathematical modeling, computational analysis, and clinical collaboration to enhance diagnostic and theranostic imaging systems. Professor Kamaliasl has authored more than 150 publications in top-tier international journals and conferences, achieving an h-index of 28, with over 3,800 citations and 160 research documents indexed in global databases. He has successfully supervised more than 45 postgraduate research projects, fostering innovation and leadership in radiological sciences. His expertise spans radio-isotopic imaging, system performance optimization, radiation shielding, device calibration, and preventive maintenance management. Recognized for his role as a visionary mentor and strategic planner, Professor Kamaliasl continues to advance multimodality molecular imaging and medical instrumentation, bridging the gap between engineering innovation and clinical application to improve diagnostic precision and therapeutic outcomes.

Profiles: Scopus | Orcid | Google Scholar | Research Gate | Linked In

Featured Publications

  1. Habibzadeh, M. A., Ay, M. R., Kamali-Asl, A. R., Ghadiri, H., & Zaidi, H. (2012). Impact of miscentering on patient dose and image noise in X-ray CT imaging: Phantom and clinical studies. Physica Medica, 28(3), 191–199.

  2. Aghakhan Olia, N., Kamali-Asl, A., Hariri Tabrizi, S., Geramifar, P., et al. (2022). Deep learning–based denoising of low-dose SPECT myocardial perfusion images: Quantitative assessment and clinical performance. European Journal of Nuclear Medicine and Molecular Imaging, 49(5), 1508–1522.

  3. Arefan, D., Talebpour, A., Ahmadinejhad, N., & Kamali-Asl, A. (2015). Automatic breast density classification using neural network. Journal of Instrumentation, 10(12), T12002.

  4. Poorbaygi, H., Aghamiri, S. M. R., Sheibani, S., Kamali-Asl, A., et al. (2011). Production of glass microspheres comprising 90Y and 177Lu for treating hepatic tumors with SPECT imaging capabilities. Applied Radiation and Isotopes, 69(10), 1407–1414.

  5. Khazaee Moghadam, M., Kamali-Asl, A., Geramifar, P., & Zaidi, H. (2016). Evaluating the application of tissue-specific dose kernels instead of water dose kernels in internal dosimetry: A Monte Carlo study. Cancer Biotherapy and Radiopharmaceuticals, 31(10), 367–379.*

Mona Fikry | Cognitive Neuroscience | Best Academic Researcher Award

Assist. Prof. Dr. Mona Fikry | Cognitive Neuroscience | Best Academic Researcher Award

Assist. Prof. Dr.  Mona Fikry, Faculty of Pharmacy-Cairo University, Egypt.

Dr. Mona Fikry Said, Assistant Professor of Pharmaceutical Chemistry at Cairo University, stands out as a dedicated educator, researcher, and mentor in the field of medicinal chemistry. Her academic journey reflects a blend of deep scientific knowledge and practical teaching expertise. She has supervised numerous postgraduate theses and published extensively in prestigious journals. Her research, particularly in the synthesis and pharmacological evaluation of novel compounds for neurodegenerative diseases, highlights her commitment to addressing real-world health challenges. Beyond her publications, Dr. Said’s influence extends through academic collaboration, curriculum development, and mentorship.

Profile

Google Scholar

🎓 Early Academic Pursuits

Dr. Mona Fikry Said began her academic journey with a strong foundation in pharmaceutical sciences, eventually channeling her passion for medicinal chemistry into advanced academic and research endeavors. Her early commitment to learning laid the groundwork for a career dedicated to both academic excellence and scientific innovation. This formative stage was marked by rigorous study and a growing interest in drug design and discovery, which shaped her professional focus.

🧪 Professional Endeavors

Currently serving as an Assistant Professor of Pharmaceutical Chemistry at the Faculty of Pharmacy, Cairo University, Dr. Said has become a respected educator and mentor in her field. She has been actively involved in teaching a wide array of pharmaceutical chemistry courses and guiding numerous master’s and doctoral students through their theses. Her role extends beyond instruction, as she also participates in academic advising and serves as an external examiner for other institutions.

🔬 Contributions and Research Focus

Dr. Said’s research is deeply rooted in pharmaceutical chemistry, with a particular focus on the development of novel bioactive compounds. Her most recent completed project, “Probing new 3-hydrazinyl indole phenacetamide derivatives as multitarget anti-Alzheimer: Synthesis, in vivo, in vitro, and in silico studies,” exemplifies her multidisciplinary approach to drug discovery. She integrates synthesis, pharmacological testing, and computational modeling to explore new therapeutic avenues, especially for neurodegenerative diseases.

🏅 Accolades and Recognition

While not always publicly documented, Dr. Said’s scientific contributions are widely acknowledged through her publications in high-impact journals such as European Journal of Medicinal Chemistry, Molecular Diversity, Bioorganic Chemistry, and Future Medicinal Chemistry. Her expertise is recognized by her academic peers, and her involvement in national academic programs highlights her standing in the pharmaceutical education community.

🌐 Impact and Influence

Through her publications in SCI and Scopus-indexed journals, Dr. Said has significantly contributed to the body of knowledge in pharmaceutical chemistry. Her work bridges theoretical research and practical applications, influencing both the academic landscape and the early stages of pharmaceutical development. By mentoring postgraduate students and collaborating across institutions, she has helped cultivate a new generation of researchers in Egypt and beyond.

📘 Legacy and Future Contributions

Dr. Said’s lasting impact lies not only in her research but also in her educational leadership. With each class she teaches and each thesis she supervises, she sows the seeds for future advancements in medicinal chemistry. Her continued involvement in clinical academic programs and university examinations ensures that her influence will resonate across institutions for years to come. Looking forward, her research aims to expand into more diverse therapeutic targets, further strengthening Cairo University’s role in pharmaceutical innovation.

🧬 Research Vision in Pharmaceutical Chemistry

With an enduring commitment to discovery, Dr. Mona Fikry Said envisions a research future driven by interdisciplinary collaboration and the integration of cutting-edge techniques. Her dedication to the design and synthesis of multitarget agents reflects a broader mission to combat complex diseases like Alzheimer’s. In doing so, she positions herself at the forefront of modern pharmaceutical chemistry, where innovation and impact go hand in hand.

Publication

  • Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents
    FA Ragab, NMA Gawad, HH Georgey, MF Said
    2013

 

  • Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates
    AM Ghanim, AS Girgis, BM Kariuki, N Samir, MF Said, A Abdelnaser, …
    2022

 

  • Pyrazolone derivatives: Synthesis, anti-inflammatory, analgesic, quantitative structure–activity relationship and in vitro studies
    FAF Ragab, NM Abdel-Gawad, HH Georgey, MF Said
    2013

 

  • Synthesis and selective inhibitory effects of some 2-oxindole benzenesulfonamide conjugates on human carbonic anhydrase isoforms CA I, CA II, CA IX and CAXII
    RF George, MF Said, S Bua, CT Supuran
    2020

 

  • Synthesis, molecular modelling and QSAR study of new N-phenylacetamide-2-oxoindole benzensulfonamide conjugates as carbonic anhydrase inhibitors
    MF Said, RF George, A Petreni, CT Supuran, NM Mohamed
    2022

 

  • Synthesis and molecular docking of new imidazoquinazolinones as analgesic agents and selective COX-2 inhibitors
    HH Hassanein, HH Georgey, MA Fouad, AM El Kerdawy, MF Said
    2017

 

  • New NSAID conjugates as potent and selective COX-2 inhibitors: Synthesis, molecular modeling and biological investigation
    RM Bokhtia, SS Panda, AS Girgis, N Samir, MF Said, A Abdelnaser, …
    2023

 

  • Development of Isatin‐Based Schiff Bases Targeting VEGFR‐2 Inhibition: Synthesis, Characterization, Antiproliferative Properties, and QSAR Studies
    IA Seliem, SS Panda, AS Girgis, QL Tran, MF Said, MS Bekheit, …
    2022

 

  • Synthesis and computational studies of novel fused pyrimidinones as a promising scaffold with analgesic, anti-inflammatory and COX inhibitory potential
    MF Said, HH Georgey, ER Mohammed
    2021

 

  • Novel Curcumin Mimics: Design, Synthesis, Biological Properties and Computational Studies of Piperidone‐Piperazine Conjugates
    MA Youssef, SS Panda, DR Aboshouk, MF Said, A El Taweel, M GabAllah, …
    2022

 

Conclusion

Through her unwavering dedication to pharmaceutical chemistry, Dr. Said has carved out a meaningful role in academia and research. Her work not only advances scientific understanding but also nurtures future innovators in the field. With a strong foundation in both teaching and research, and a vision for multidisciplinary innovation, she is poised to continue making impactful contributions to drug discovery and pharmaceutical education in the years to come.

Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li | Neuroanatomy | Best Researcher Award

Prof. Baoman Li, China Medical University,  China.

Professor Baoman Li stands at the forefront of contemporary neuroscience and pharmacology, merging deep academic knowledge with impactful translational research. From his foundational training at China Medical University to his postdoctoral work in the United States, he has consistently demonstrated excellence in exploring the physiological and molecular mechanisms of the central nervous system. Currently a Professor and Department Director, his work has revealed novel insights into cerebrospinal fluid transport, neuronal excitability regulation, and bipolar disorder modeling. These discoveries have been featured in top-tier journals such as PNAS, Cell Metabolism, and Molecular Psychiatry.

Profile

Scopus

🎓 Early Academic Pursuits

Baoman Li’s journey into the world of biomedical science began with a strong academic foundation. He pursued his Ph.D. in Medical Pharmacology at China Medical University, where he cultivated a keen interest in the intersection of neuroscience, pharmacology, and toxicology. His early research provided him with an in-depth understanding of neural mechanisms and laid the groundwork for his future innovations. Eager to expand his international experience, he furthered his postdoctoral research at the University of Rochester Medical Center (USA) from 2013 to 2014, where he deepened his expertise in neuropharmacological research.

🧪 Professional Endeavors

Currently serving as a Professor and Department Director at the Forensic Analytical Toxicology Department of China Medical University, Professor Li leads a dynamic team of researchers and scholars. His leadership has not only enhanced academic standards within the department but has also positioned it as a center of excellence in the field of neuroglial research and forensic toxicology. His multidisciplinary approach merges analytical science with neuroscience, significantly advancing our understanding of central nervous system (CNS) function and dysfunction.

🧠 Contributions and Research Focus

Professor Li’s research focuses on cutting-edge discoveries related to neural mechanisms, cerebrospinal fluid dynamics, and neuropsychiatric disorders. One of his landmark studies, published in PNAS (2024), identified ependymal cell-mediated cerebrospinal fluid transport from the CNS to peripheral organs, revealing a critical physiological communication pathway. In another pivotal contribution in Cell Metabolism (2025), he elucidated the role of the NE-FFA-Na⁺/K⁺-ATPase pathway in regulating neuronal hyperexcitability and behavioral arousal. Moreover, his groundbreaking development of a circadian disruption-induced manic mouse model for bipolar disorder research (published in Molecular Psychiatry, 2023) has provided a valuable tool for studying mood disorders and developing new therapeutic approaches.

📚 Academic Publications and Editorial Work

With an impressive academic portfolio, Professor Li has authored and edited three influential books centered on neuroglial science, expanding the literature in this specialized domain. His published works include notable titles with ISBNs: 978-7-117-34321-3, 978-3-030-77375-5, and 978-2-88963-497-2. These contributions serve as essential resources for both emerging and seasoned neuroscientists, offering detailed insights into glial biology, neurochemical interactions, and translational research.

🏅 Accolades and Recognition

Professor Li’s scholarly excellence is widely recognized, as reflected in his H-index of 34 and a total citation count of 3,530 according to Web of Science. His ability to consistently produce high-impact research has made him a respected voice in neuroscience and pharmacology. He has successfully led eight research projects funded by prestigious bodies such as the Natural Science Foundation of China and the Ministry of Education, while also currently heading two additional projects supported by the provincial science foundation.

🤝 Industry and Consultancy Impact

Beyond academic circles, Professor Li has extended his expertise into practical applications through four consultancy projects, bridging the gap between research and real-world forensic or pharmaceutical needs. His ability to translate complex neuropharmacological findings into actionable insights for the industry underscores his role as not only a theorist but also a problem-solver and innovator.

🔬 Legacy and Future Contributions

As a scientist, educator, and leader, Professor Baoman Li continues to shape the future of neuroscience and pharmacological toxicology. His ongoing research and collaborative efforts are expected to yield further breakthroughs in understanding brain-behavior relationships and disease mechanisms. With a legacy already marked by innovation and impact, his future contributions promise to enhance diagnostics, treatments, and preventive strategies for neurological and psychiatric disorders. His commitment to mentoring young scholars and editing academic literature ensures that his influence will resonate across generations of researchers to come.

Publication

  • Title: Cerebrospinal Fluid Enters Peripheral Organs by Spinal Nerves Supporting Brain–Body Volume Transmission
    Authors: Li, Baoman; Xia, Maosheng; Harkany, Tibor; Verkhratsky, Alexei N.
    Year: Not specified (likely 2024 or 2025)

 

  • Title: Anti-seizure effects of norepinephrine-induced free fatty acid release
    Authors: Li, Baoman; Sun, Qian; Ding, Fengfei; Smith, Nathan A.; Nedergaard, Maiken
    Year: 2025
    Journal: Cell Metabolism

 

  • Title: Major depressive disorder: hypothesis, mechanism, prevention and treatment
    Authors: Cui, Lulu; Li, Shu; Wang, Siman; Xia, Maosheng; Li, Baoman
    Year: Not specified (likely 2024 or 2025)
    Type: Review (Open access)

 

  • Title: The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs
    Authors: Li, Xinyu; Wang, Siman; Zhang, Dianjun; Xia, Maosheng; Li, Baoman
    Year: 2024
    Journal: Proceedings of the National Academy of Sciences of the USA (Open access)

 

  • Title: Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice
    Authors: Wang, Shuying; Yu, Xiaojin; Cheng, Lili; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Cell Death and Disease (Open access)

 

  • Title: Ketamine administration causes cognitive impairment by destroying the circulation function of the glymphatic system
    Authors: Wu, Xue; Wen, Gehua; Yan, Lei; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Biomedicine and Pharmacotherapy (Open access)

 

  • Title: Correction to: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology (Erratum, Open access)

 

  • Title: Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model
    Authors: Wen, Gehua; Zhan, Xiaoni; Xu, Xiaoming; Lu, Yan; Wu, Xu
    Year: 2024
    Journal: Molecular Neurobiology

 

  • Title: Trace metals and astrocytes physiology and pathophysiology
    Authors: Li, Baoman; Yu, Weiyang; Verkhratsky, Alexei N.
    Year: 2024
    Journal: Cell Calcium

 

Conclusion:

Dr. Baoman Li is a strong and deserving candidate for the Best Researcher Award. His innovative research, publication in high-impact journals, and interdisciplinary contributions demonstrate excellence and sustained scientific productivity. While he can enhance his visibility and further define his leadership role, his current achievements are more than sufficient to merit this prestigious recognition.

 

Abdullah Alghamdi | Emerging Areas in Neuroscience | Best Researcher Award

Mr. Abdullah Alghamdi | Emerging Areas in Neuroscience | Best Researcher Award

Mr. Abdullah Alghamdi, University of Birmingham (UK) and Taibah University (Saudi Arabia),  United Kingdom.

Eng. Abdullah A. Zohaid (SMIEEE, SMIET) is an accomplished electrical engineer and academic with a specialization in Smart Power Systems, focusing on electric vehicles, AI-integrated transportation systems, and sustainable smart city infrastructure. With a solid educational foundation—earning distinctions at every academic level—he has seamlessly merged academic excellence with real-world engineering experience. From his early career at Saudi Aramco to his dual lecturing roles at Taibah University and the University of Birmingham, Abdullah has built a reputation as a forward-thinking researcher, educator, and strategist. His work bridges technical innovation with societal needs, aiming to optimize power grids and energy systems for a sustainable future.

Profile

Google Scholar

🎓 Early Academic Pursuits

From the historic city of Medina, Saudi Arabia, Eng. Abdullah A. Zohaid embarked on his academic journey in Electrical Engineering at Taibah University, where his talent and determination earned him distinction in his final project. His academic passion soon carried him to the United Kingdom, where he pursued an MSc in Electrical Power Systems at the University of Birmingham, graduating with First-Class Honors and distinction. Abdullah’s unwavering commitment to academic excellence continued as he embarked on a Ph.D. in Smart Power Systems at the same institution. Excelling in all areas, he has distinguished himself through both research prowess and scholastic achievement.

⚡ Professional Endeavors

Eng. Alghamdi has established himself as a dynamic professional straddling the worlds of academia and industry. His journey began with Saudi Aramco’s Dodsal Company, contributing to the vital 56″ Gas Pipeline project as an assistant electrical engineer. He transitioned into academia with his role as a Lecturer at Taibah University in Yanbu and later joined the University of Birmingham as a faculty member. Balancing dual academic roles in Saudi Arabia and the UK, Abdullah has developed a unique global perspective, blending practical engineering insight with cutting-edge educational delivery. His presence as an educator underscores his belief in empowering future engineers with real-world readiness.

🔬 Contributions and Research Focus

A scholar deeply embedded in the future of sustainable power, Eng. Alghamdi’s research focuses on Smart Power Systems, electric vehicles, smart charging infrastructures, and the integration of AI in intelligent transportation systems. Through his ongoing Ph.D. research, he explores how emerging technologies can enhance smart grid resilience and contribute to the development of smart cities. He utilizes advanced simulation and optimization tools such as MATLAB/SIMULINK, Python, and Gurobi, combined with machine learning techniques (ANN/CNN), to propose innovative solutions that address pressing energy challenges. His passion for sustainability is evident in his contributions to the global energy discourse, especially in urban mobility and decarbonization.

🏆 Accolades and Recognition

Eng. Zohaid’s career is adorned with recognition and academic milestones. His consistent distinction in every academic phase, including honors during both his MSc and Ph.D. studies, reflects a sustained trajectory of excellence. As a senior member of prestigious engineering bodies like IEEE and IET, and a certified Professional Engineer by the Saudi Council of Engineers, his credentials are a testament to his standing in the professional community. Furthermore, his publications in Q1 journals and contributions to leading international conferences validate the depth of his research and the quality of his scholarly communication.

🌍 Impact and Influence

With affiliations across IEEE working groups and university research circles, Eng. Alghamdi’s influence spans global academic and professional spheres. As a presenter and contributor at numerous high-level conferences — from the IEEE Power & Energy Society to Net Zero Futures and Saudi Innovation events — he has played a key role in shaping conversations on smart energy. His multidisciplinary expertise allows him to drive collaborations across AI, optimization, and power systems, impacting both policy and practice. His ability to simplify complex engineering concepts and communicate them effectively has enabled him to become a trusted voice among peers and students alike.

💡 Innovation and Strategic Vision

Abdullah’s strength lies in visionary thinking and strategic problem-solving. He doesn’t merely research problems—he crafts systems and strategies that reflect future-forward thinking. His approach to sustainable urban infrastructure blends technological acumen with strategic planning, leadership, and innovation. As an educator and researcher, he fosters environments that promote critical thinking and team-based innovation, cultivating the next generation of engineers equipped to face tomorrow’s challenges. His work on smart charging and intelligent transportation embodies the essence of transformative impact through design thinking and systems innovation.

🚀 Legacy and Future Contributions

Looking ahead, Eng. Abdullah A. Zohaid is poised to leave a lasting legacy in the realm of smart power systems and urban sustainability. His dual role as a lecturer and researcher gives him a powerful platform to shape both academic knowledge and real-world applications. With his continued focus on electrification, smart mobility, and AI-driven infrastructure, he is on track to influence policy, inspire innovation, and expand the boundaries of what is possible in modern power systems. His legacy will be defined not only by the technologies he helps build but also by the students and professionals he inspires along the way.

Publication

  • Innovative Prepositioning and Dispatching Schemes of Electric Vehicles for Smart Distribution Network Resiliency and Restoration
    AAM Alghamdi, D. Jayaweera, 2022

 

  • Resilience of Modern Power Distribution Networks with Active Coordination of EVs and Smart Restoration
    AAM Alghamdi, D. Jayaweera, 2023

 

  • Modelling Frameworks Applied in Smart Distribution Network Resiliency and Restoration
    AAM Alghamdi, D. Jayaweera, 2022

 

  • Resilience-Oriented Restoration in Modern Power Distribution Networks with Smart Electric Vehicles Coordination Framework
    A. Alghamdi, D. Jayaweera, 2023

 

  • Risk and Resilience Based Residential Electric Vehicle Integration Framework for Restoration of Modern Power Distribution Networks
    A. Alghamdi, D. Jayaweera, 2025

 

  • Electric Boats and Electric Vehicles Data-Driven Approach for Enhanced Resilience in Power Distribution Networks
    AAM Alghamdi, D. Jayaweera, 2025

 

✅ Conclusion

Eng. Alghamdi stands at the forefront of energy transformation, using research, innovation, and teaching as tools to drive meaningful change. His contributions reflect a blend of technical mastery and visionary leadership, enabling progress in smart mobility, clean energy, and intelligent infrastructure. With a growing portfolio of Q1 publications, prestigious memberships, and impactful conference roles, he continues to influence the field of electrical engineering on a global scale. As he advances in his career, his legacy will be marked by both technological advancements and the future minds he mentors—solidifying his role as a transformative figure in the evolution of smart power systems.

Lina Begdache | Behavioral Neuroscience | Best Researcher Award

Dr. Lina Begdache | Behavioral Neuroscience | Best Researcher Award

Dr. Lina Begdache, Binghamton University United States.

Dr. Lina Begdache is a distinguished scholar, educator, and registered dietitian whose academic foundation in neuroscience and nutrition laid the groundwork for a dynamic career dedicated to understanding the relationship between brain function, diet, and wellness. With a Ph.D. in Neuroscience and an M.S. focused on obesity research, she has combined rigorous scientific inquiry with a passion for teaching and public health advocacy. Her roles at SUNY Binghamton University reflect a steady progression from lecturer to Associate Professor, marked by interdisciplinary collaborations and student-centered mentorship. Dr. Begdache’s research delves into how lifestyle and dietary factors influence mental health, and her influence is felt both in academia and broader public health initiatives. She has received numerous awards recognizing her contributions to nutrition science, education, and community engagement.

Profile

Google Scholar

🎓 Early Academic Pursuits

Dr. Lina Begdache began her academic journey with a keen interest in the biological underpinnings of human health. She earned her Master of Science in 1998 from the University at Buffalo, where her research focused on lipogenesis in adipose cells, contributing to the broader field of obesity research. Her passion for neuroscience led her to pursue doctoral studies at Binghamton University, where she received her Ph.D. in 2008. Her dissertation examined differentiation and apoptosis in neuronal cells, marking her early commitment to understanding the interplay between nutrition, brain function, and cellular health.

🧑‍🏫 Professional Endeavors in Academia

Dr. Begdache’s academic career reflects her dedication to education and interdisciplinary teaching. Beginning as a Teaching Assistant in Nutritional Sciences and Biological Sciences, she steadily rose through the academic ranks at SUNY Binghamton University. From her role as an adjunct lecturer to her current position as an Associate Professor in Health and Wellness Studies at Decker College of Nursing and Health Sciences, Dr. Begdache has been an integral part of Binghamton’s educational community. She also held a Visiting Research Associate position in Biomedical Anthropology, showcasing her collaborative and cross-disciplinary approach to health sciences.

🧠 Contributions and Research Focus

Dr. Begdache’s research merges neuroscience, nutrition, and wellness, emphasizing how diet and lifestyle choices influence brain function and mental health across different age groups. Her expertise spans from neurobiology to dietetics, supported by multiple professional certifications including RDN, CDN, and CNS-S. Her work aims to uncover the nutritional requirements for optimal cognitive performance, especially in populations vulnerable to stress and poor diet habits, such as college students and older adults. She is widely respected for translating complex scientific findings into accessible wellness strategies.

🏆 Accolades and Recognition

Over the years, Dr. Begdache’s work has earned her numerous awards and honors, underlining her influence both in academia and public health. Notable recognitions include being named a Fellow of the Academy of Nutrition and Dietetics (FAND) in 2018 and receiving multiple Career Champion awards from the Fleishman Center at Binghamton University. Her Excellence Award from the NYS Academy of Nutrition and Dietetics and recognition as Best Professor by the senior class of 2019 reflect the respect she has garnered from both peers and students alike.

📚 Impact on Education and Mentorship

A passionate educator, Dr. Begdache has significantly impacted student success at Binghamton University. Her engaging teaching style and deep commitment to mentoring have led to widespread student admiration, culminating in accolades such as “Best Professor” and Engaged Faculty Fellow for Teaching Excellence. She has contributed to shaping future professionals in dietetics and health sciences, empowering students with scientific knowledge and life skills that go beyond the classroom.

🌐 Influence on Public Health and Nutrition Science

Through her research and public engagement, Dr. Begdache has played a vital role in bridging the gap between academic research and real-world health practices. She is frequently invited to review for journals such as the Journal of Nutrition Education and Behavior and has been recognized for her outstanding contributions to the scientific community. Her insights on how nutrition and lifestyle impact mental well-being are frequently cited in both academic and public health circles.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Begdache is poised to further influence integrative health science, promoting a holistic understanding of brain-body connections. Her future work aims to develop personalized nutritional frameworks that support cognitive resilience and mental well-being in diverse populations. With her interdisciplinary background and steadfast commitment to improving public health, Dr. Lina Begdache’s legacy will undoubtedly continue to inspire and educate generations of researchers, clinicians, and health advocates.

Publication

  • Title: Sweat and saliva cortisol response to stress and nutrition factors
    Authors: P Pearlmutter, G DeRose, C Samson, N Linehan, Y Cen, L Begdache, …
    Year: 2020

 

  • Title: Comparison of colorimetric analyses to determine cortisol in human sweat
    Authors: E Tu, P Pearlmutter, M Tiangco, G Derose, L Begdache, A Koh
    Year: 2020

 

  • Title: Effect of sterols and fatty acids on growth and triglyceride accumulation in 3T3-L1 cells
    Authors: AB Awad, LA Begdache, CS Fink
    Year: 2000

 

  • Title: Assessment of dietary factors, dietary practices and exercise on mental distress in young adults versus matured adults: a cross-sectional study
    Authors: L Begdache, M Chaar, N Sabounchi, H Kianmehr
    Year: 2019

 

  • Title: Principal component regression of academic performance, substance use and sleep quality in relation to risk of anxiety and depression in young adults
    Authors: L Begdache, H Kianmehr, N Sabounchi, A Marszalek, N Dolma
    Year: 2019

 

  • Title: Diet, exercise, lifestyle, and mental distress among young and mature men and women: A repeated cross-sectional study
    Authors: L Begdache, S Sadeghzadeh, G Derose, C Abrams
    Year: 2020

 

  • Title: Principal component analysis identifies differential gender-specific dietary patterns that may be linked to mental distress in human adults
    Authors: L Begdache, H Kianmehr, N Sabounchi, M Chaar, J Marhaba
    Year: 2020

 

  • Title: Validity and reliability of food–mood questionnaire (FMQ)
    Authors: L Begdache, R Marhaba, M Chaar
    Year: 2019

 

  • Title: Customization of diet may promote exercise and improve mental wellbeing in mature adults: The role of exercise as a mediator
    Authors: L Begdache, CM Patrissy
    Year: 2021

 

  • Title: Common and differential associations between levels of alcohol drinking, gender-specific neurobehaviors and mental distress in college students
    Authors: L Begdache, H Kianmehr, N Sabounchi, A Marszalek, N Dolma
    Year: 2020

 

🏁 Conclusion

Dr. Lina Begdache’s journey exemplifies the power of integrating scientific knowledge with practical application. Through her innovative research, impactful teaching, and community outreach, she continues to shape the fields of nutrition and mental wellness. Her legacy is one of empowerment—educating future professionals, influencing public health policies, and promoting evidence-based strategies for holistic well-being. As she advances in her career, Dr. Begdache is poised to remain a trailblazer in health and wellness studies, making lasting contributions to the science of nutrition and the enhancement of human potential.

Alex Armstrong | Systems Neuroscience | Young Scientist Award

Mr. Alex Armstrong | Systems Neuroscience | Young Scientist Award

Mr. Alex Armstrong, University of Illinois, Urbana-Champaign, United States.

Alex Armstrong is an emerging leader in the field of systems neuroscience with a rich academic background and a global research footprint. Starting with a strong foundation in pharmacology from the University of Manchester and early research experience in China, he has built an interdisciplinary career that bridges experimental, computational, and translational neuroscience. His Ph.D. work at the University of Illinois Urbana-Champaign, under the guidance of Prof. Yurii Vlasov, focuses on the neural mechanisms of perceptual decision-making using innovative tools like tactile virtual reality and localized lesioning techniques. He has also played integral roles in teaching, mentoring, and collaborative NIH-funded research involving cutting-edge neural probes. His contributions span from fundamental neuroscience to neuroengineering, with multiple international presentations and a growing reputation in both academic and applied research communities.

Profile

Google Scholar

🎓 Early Academic Pursuits

Alex Armstrong’s journey into the world of neuroscience began with a strong academic foundation in Pharmacology at the University of Manchester, where he earned a BSc (Honors) degree in 2017. During his undergraduate studies, he delved into the neural effects of psychoactive substances, leading a research project examining the influence of various drugs on receptive fields in the rat lateral geniculate nucleus. His academic curiosity was not confined to the lab; Alex actively mentored disadvantaged youth in science and mathematics through the CityWise charity, demonstrating an early commitment to both education and societal impact. His academic appetite took a global turn when he received a competitive scholarship to Nanjing Medical University in China. There, he shadowed urologists and contributed to prostate cancer research by processing tumor samples and supporting manuscript preparation under the mentorship of Dr. Jian Lin. This early immersion into translational research laid the groundwork for his future endeavors in systems neuroscience.

🧠 Research Focus and Innovation

Currently pursuing his Ph.D. at the University of Illinois Urbana-Champaign, Alex Armstrong is at the forefront of neuroscience research under the mentorship of Professor Yurii Vlasov, a member of the National Academy of Engineering. His research seeks to unravel the neural underpinnings of perceptual decision-making using advanced technologies. Alex has pioneered the development of a novel tactile virtual reality system tailored for mice, enabling precise behavioral and neural investigations in ecologically valid scenarios. His contributions also include designing a localized lesioning technique to dissect the causal roles of specific cortical regions with unmatched spatial and temporal resolution. This work reflects his deep integration of behavior, electrophysiology, histology, and computational modeling — a rare confluence of skills that pushes the boundaries of systems neuroscience.

🔬 Professional Endeavors and Laboratory Leadership

Alex’s career includes impactful positions across globally renowned institutions. Prior to his doctoral studies, he served as a Research Technician at University College London, working in auditory neuroscience labs with PIs Jennifer Linden and Nicholas Lesica. There, he independently managed experiments related to auditory perception and hearing aid technology, leading both behavioral training and neural recordings. At UIUC, his laboratory involvement extends beyond individual research: he performs surgeries, manages mouse colonies, trains new graduate and undergraduate researchers, and leads collaborative NIH-funded projects investigating simultaneous electrical and chemical neural activity during seizures. Alex is a dependable pillar in the lab, bridging experiment and innovation through hands-on mentorship and project leadership.

🏆 Accolades and Recognition

Alex’s academic and scientific contributions have been recognized at multiple levels. He has presented his work through nine conference talks and poster presentations at premier forums including Barrels, the Society for Neuroscience, and AREADNE between 2021 and 2024. His visibility within the academic community extends to teaching, where he was entrusted as a Teaching Assistant for the competitive Neural Interface Engineering course (ECE421) in 2024 and 2025, guiding over 50 students through workshops, lessons, and exam reviews. His role on the UIUC neuroscience seminar committee in 2022 further demonstrated his leadership in promoting interdisciplinary dialogue, as he invited top neuroscientists from across the world to contribute to the university’s vibrant intellectual atmosphere.

🧪 Scientific Contributions and Methodological Advancements

One of Alex Armstrong’s most significant contributions lies in his ability to blend experimental neuroscience with computational modeling. His proficiency spans advanced analytical methods including Generalized Linear Models (GLM), Drift Diffusion Models (DDM), Dimensionality Reduction, and DyNetCP, positioning him at the intersection of theory and practice. His work not only provides high-resolution insights into brain function but also informs the design of next-generation neural interface devices. His leadership in testing novel neural probes capable of simultaneously recording both electrical and chemical signals underlines his commitment to tool development in neuroscience — a field critical to brain–machine interface technologies and precision neuromodulation.

🌍 Impact and Influence

Alex Armstrong’s research has both immediate and long-term scientific value. By enhancing our understanding of the cortical mechanisms underlying decision-making, his work informs the broader fields of psychology, cognitive science, and artificial intelligence. His contributions to probe testing during seizure dynamics have implications for epilepsy research, potentially opening doors for better diagnostics and treatment strategies. Furthermore, his global academic experience — spanning the U.K., U.S., and China — contributes to his inclusive scientific perspective and ability to work across cultural and institutional boundaries. He has not only advanced science but also nurtured future researchers through consistent mentoring and training roles.

🚀 Legacy and Future Contributions

Looking ahead, Alex Armstrong is poised to become a leading figure in systems neuroscience, particularly in decoding the neural basis of cognition and behavior. With a solid foundation in experimentation, programming, and tool development, he is uniquely equipped to tackle the grand challenges of brain science in the 21st century. His efforts are steadily laying a legacy of open, interdisciplinary research, bridging the biological and engineering aspects of neuroscience. Whether through innovative VR paradigms for animal behavior, high-density probe validation, or collaborative research across continents, Alex continues to pave the way for future breakthroughs in understanding the human brain.

Publication

  • Title: Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer
    Authors: JZ Lin, ZJ Wang, W De, M Zheng, WZ Xu, HF Wu, A Armstrong, JG Zhu
    Year: 2017

 

  • Title: Compression and amplification algorithms in hearing aids impair the selectivity of neural responses to speech
    Authors: AG Armstrong, CC Lam, S Sabesan, NA Lesica
    Year: 2022

 

  • Title: The hearing aid dilemma: amplification, compression, and distortion of the neural code
    Authors: A Armstrong, CC Lam, S Sabesan, NA Lesica
    Year: 2020

 

  • Title: Nonlinear sensitivity to acoustic context is a stable feature of neuronal responses to complex sounds in auditory cortex of awake mice
    Authors: M Akritas, AG Armstrong, JM Lebert, AF Meyer, M Sahani, JF Linden
    Year: 2024

 

  • Title: Contextual modulation is a stable feature of the neural code in auditory cortex of awake mice
    Authors: M Akritas, AG Armstrong, JM Lebert, AF Meyer, M Sahani, JF Linden
    Year: 2023

 

  • Title: Neuropeptides in the Extracellular Space of the Mouse Cortex Measured by Nanodialysis Probe Coupled with LC-MS
    Authors: K Li, W Shi, Y Tan, Y Ding, A Armstrong, Y Vlasov, J Sweedler
    Year: 2025

 

  • Title: Neural correlates of perceptual decision making in primary somatosensory cortex
    Authors: A Armstrong, Y Vlasov
    Year: 2025

 

  • Title: Perceptual decision-making during whisker-guided navigation causally depends on a single cortical barrel column
    Authors: AG Armstrong, Y Vlasov
    Year: 2025

 

 

Conclusion

Alex Armstrong exemplifies the next generation of neuroscientists—technically skilled, globally experienced, and intellectually versatile. His ability to merge behavioral neuroscience with advanced computational tools and engineering innovations positions him at the forefront of brain research. As he continues to contribute to our understanding of neural dynamics and brain–machine interfaces, Alex is set to leave a lasting impact on neuroscience and its applications in medicine and technology. His trajectory reflects not just scientific excellence, but also a commitment to mentorship, interdisciplinary collaboration, and innovation-driven discovery.

Arockia Rosy N | Computational Neuroscience | Best Researcher Award

Mrs. Arockia Rosy N | Computational Neuroscience | Best Researcher Award

Mrs. Arockia Rosy N, R.M.D. Engineering College, India.

N. Arockia Rosy is an accomplished Assistant Professor in Information Technology at R.M.D. Engineering College, currently pursuing her Ph.D. at Anna University. With over 15 years of teaching experience, she has made significant contributions to research and innovation in the fields of Artificial Intelligence, Machine Learning, Cloud Computing, and Data Analytics. Her academic journey includes one major research project, four peer-reviewed journal publications, a book, a pending patent, and four industry consultancy projects. She is actively involved in professional organizations such as IAENG and IFERP, with a citation index of 18 underscoring the impact of her scholarly work.

Profile

Scopus

🎓 Early Academic Pursuits

N. Arockia Rosy embarked on her academic journey with a strong foundation in Information Technology, earning her M.Tech in the field. Her passion for learning and commitment to academic excellence led her to pursue a Ph.D. at Anna University, where she continues to delve deeper into the evolving landscape of computer science and information systems. Her early academic experiences set the stage for a long and fruitful career in teaching and research, grounded in technical rigor and curiosity-driven inquiry.

👩‍🏫 Professional Endeavors

With over 15 years of dedicated service in engineering education, N. Arockia Rosy has been shaping young minds as an Assistant Professor at R.M.D. Engineering College. Her professional role extends beyond traditional classroom instruction, encompassing mentorship, curriculum development, and industry engagement. Through her academic leadership, she has significantly influenced the Information Technology department, contributing to its growth and modernization in alignment with global standards.

🧠 Contributions and Research Focus

Arockia Rosy’s research portfolio reflects her deep interest in emerging technologies such as Artificial Intelligence, Machine Learning, Data Analytics, and Cloud Computing. She has completed one major research project and authored four journal articles indexed in prestigious databases like SCI and Scopus. Her scholarly output is complemented by a published book with ISBN 9798369367056 and a patent currently in process. Her work bridges theoretical innovation with practical application, addressing challenges in computational intelligence and data-driven systems.

💼 Industry Collaboration and Innovation

Actively connecting academia with the tech industry, she has participated in four consultancy projects that apply academic expertise to solve real-world IT problems. These engagements underscore her ability to translate theoretical knowledge into scalable industry solutions. Her involvement in consultancy also fosters valuable collaborations that benefit both her students and the broader technological community.

📈 Accolades and Recognition

N. Arockia Rosy’s research has earned her a citation index of 18, indicating the growing relevance and acknowledgment of her scholarly contributions within the global research community. She is a proud member of professional bodies such as the International Association of Engineers (IAENG) and the Institute For Engineering Research and Publication (IFERP), through which she maintains an active presence in the broader scientific discourse.

🌐 Impact and Influence

Beyond her publications and projects, Arockia Rosy’s influence is seen in her efforts to integrate cutting-edge research into the classroom, preparing students for the demands of a technology-driven future. Her innovative teaching methodologies and commitment to academic integrity have helped foster a generation of IT professionals equipped with both theoretical acumen and practical skill.

🌟 Legacy and Future Contributions

Looking ahead, N. Arockia Rosy aspires to expand her research in AI-driven cloud solutions and intelligent analytics. Her legacy lies not only in her scholarly work and industrial contributions but also in her unwavering commitment to shaping the next wave of technology leaders. With continued efforts in research, education, and innovation, she is poised to leave an indelible mark on the academic and technological landscapes alike.

Publication

Title: A Real-Time Auditing System for Secure Storage Using QR Code
Authors: P. Baby Shamini, P. Jemi Gold, K. Neela, R. Hemala, B. Jaison

 

Conclusion

Through her unwavering dedication to research, education, and industry collaboration, N. Arockia Rosy exemplifies the role of a modern educator and researcher. Her work bridges the gap between theory and practice, fostering technological innovation and inspiring future professionals. As she continues to pursue advanced research and contribute to the academic community, her influence is set to grow—leaving a meaningful legacy in both academia and the ever-evolving tech landscape.

Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang, University of Virginia, United States.

Dr. Aiying Zhang is a rising scholar in the field of mental health data science, currently serving as an Assistant Professor at the University of Virginia and a Faculty Member at the UVA Brain Institute. Her academic foundation spans statistics, biomedical engineering, and clinical biostatistics, acquired from esteemed institutions including USTC, Tulane University, and Columbia University. Her research focuses on developing advanced computational and statistical tools—such as graphical models and multimodal fusion—to decode complex brain data from imaging and genetics. She applies these innovations to better understand and predict psychiatric conditions such as schizophrenia and Alzheimer’s disease. Her work is distinguished by its interdisciplinary nature, translational relevance, and potential to reshape clinical approaches to mental health.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Aiying Zhang’s journey into the realm of data science and mental health research began with a strong foundation in quantitative sciences. She earned her Bachelor of Science degree in Statistics from the prestigious School for the Gifted Young at the University of Science and Technology of China (USTC) in 2014. Driven by a passion for biomedical innovation and its intersection with human health, she pursued a Ph.D. in Biomedical Engineering from Tulane University, which she completed in 2021. Her graduate years were marked by deep inquiry into statistical modeling and neuroimaging, laying the groundwork for her later interdisciplinary research. She further honed her expertise through postdoctoral training in Clinical Biostatistics and Psychiatry at Columbia University Irving Medical Center, where she blended statistical rigor with clinical insight.

💼 Professional Endeavors

Dr. Zhang is currently an Assistant Professor of Data Science at the University of Virginia, where she has been on the tenure-track faculty since August 2023. She also holds a concurrent position as a Faculty Member at the UVA Brain Institute, underscoring her active role in advancing brain research across institutional boundaries. Prior to her academic appointment at UVA, she served as a Research Scientist II at the New York State Psychiatric Institute, contributing to high-impact psychiatric research. Her professional journey also includes research assistantships at Tulane University and the University of Florida, roles in which she cultivated strong collaborative and translational research skills.

🧠 Contributions and Research Focus

Dr. Zhang’s research lies at the intersection of data science, neuroscience, and mental health. She specializes in developing advanced statistical and computational methodologies to investigate the biological underpinnings of psychiatric and neurodevelopmental disorders. Her work prominently features the use of graphical models—both directed and undirected—and machine learning techniques to analyze complex datasets, such as MRI, DTI, fMRI, MEG, and various genomic modalities including SNP and DNA methylation. Her research has contributed to a deeper understanding of conditions like schizophrenia, Alzheimer’s disease, obsessive-compulsive disorder, and anxiety disorders, through the lens of multimodal data fusion and integrative neurogenetics.

🧪 Innovation in Mental Health Data Science

A distinctive hallmark of Dr. Zhang’s scholarship is her innovative application of multimodal fusion techniques to disentangle the complexities of typical and atypical brain development. Her work leverages high-dimensional neuroimaging and genetic data to draw meaningful inferences about mental health trajectories. She is particularly focused on building interpretable models that bridge the gap between data and clinical insight, thereby enabling earlier and more precise diagnostics. By combining machine learning with biomedical expertise, her contributions pave the way for next-generation tools in psychiatry and neuroscience.

🏅 Accolades and Recognition

Throughout her academic and professional trajectory, Dr. Zhang has earned widespread respect for her analytical acumen and interdisciplinary collaborations. Her postdoctoral role at Columbia, a hub for clinical psychiatry and biostatistics, positioned her among leaders in the field and enriched her research portfolio with translational applications. Her selection as faculty at a leading institution like UVA further reflects recognition of her scholarly excellence and her potential to drive future innovations in mental health data science.

🌍 Impact and Influence

Dr. Zhang’s work has significant implications for both the scientific community and clinical practice. Her methods empower researchers and clinicians alike to draw meaningful patterns from multimodal datasets, thereby advancing precision psychiatry. Moreover, her collaborative efforts across biomedical engineering, statistics, and clinical disciplines have fostered integrative frameworks that extend beyond academic settings into real-world applications. Her contributions are helping to shape a more data-driven and personalized future in mental health care.

🔮 Legacy and Future Contributions

As she continues her academic journey, Dr. Zhang aims to expand her research frontiers by exploring dynamic brain-behavior associations and improving the interpretability of AI models in clinical contexts. With a commitment to mentorship and open science, she is building a legacy rooted in intellectual rigor, innovation, and societal relevance. Her future contributions are expected to not only deepen our understanding of mental health disorders but also inspire a new generation of data scientists dedicated to neuroscience and human well-being.

Publication

  • Leverage multimodal neuro-imaging and genetics to identify causal relationship between structural and functional connectivity and ADHD with Mendelian randomization
    C Ji, S Lee, S Sequeira, J Jin, A Zhang2025

 

  • Integrated brain connectivity analysis with fmri, dti, and smri powered by interpretable graph neural networks
    G Qu, Z Zhou, VD Calhoun, A Zhang, YP Wang2025

 

  • Altered hierarchical rank in intrinsic neural time-scales in autism spectrum disorder
    A Solomon, W Yu, J Rasero, A Zhang2025

 

  • A Privacy-Preserving Domain Adversarial Federated learning for multi-site brain functional connectivity analysis
    Y Zhang, L Wang, KJ Su, A Zhang, H Zhu, X Liu, H Shen, VD Calhoun, …2025

 

  • A Novel GNN Framework Integrating Neuroimaging and Behavioral Information to Understand Adolescent Psychiatric Disorders
    W Yu, G Qu, Y Kim, L Xu, A Zhang2025

 

  • A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence
    A Zhang, G Zhang, B Cai, TW Wilson, JM Stephen, VD Calhoun, YP Wang2024

 

  • Exploring hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee2024

 

  • Time‐varying dynamic Bayesian network learning for an fMRI study of emotion processing
    L Sun, A Zhang, F Liang2024

 

  • Altered hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee, …2024

 

  • Associations Between Brain Connectivity and Psychiatric Symptoms in Children: Insights into Adolescent Mental Health
    D Mutu, K Ji, X He, S Lee, S Sequeira, A Zhang2024

 

🧾 Conclusion

Dr. Zhang’s journey exemplifies a seamless integration of data science and neuroscience to address pressing mental health challenges. Her innovative use of multimodal data and machine learning not only contributes to scientific advancement but also enhances real-world clinical decision-making. As she continues to pioneer research at the intersection of computation and psychiatry, her influence is poised to grow, shaping the future of precision mental health care and empowering both academia and clinical practice through data-driven insights.

 

Che Ping Cheng | Translational Neuroscience | Best Researcher Award

Prof. Che Ping Cheng | Translational Neuroscience | Best Researcher Award

Prof. Che Ping Cheng, Wake Forest University School of Medicine, United States.

Dr. Che Ping Cheng, M.D., Ph.D., FAHA, is a distinguished cardiovascular physiologist and internal medicine specialist whose career has been dedicated to advancing the understanding of heart function and failure. From earning his medical degree in China to completing a Ph.D. in Physiology at Wayne State University, and later conducting pivotal postdoctoral research at Wake Forest School of Medicine, Dr. Cheng has consistently pursued excellence in science and education. His research on ventricular mechanics, volume loading, and heart failure has significantly influenced both experimental cardiology and clinical practice. Recognized as a Fellow of the American Heart Association, he is also a dedicated mentor, shaping the next generation of cardiovascular researchers through his academic leadership.

Profile

Scopus

 

🎓 Early Academic Pursuits

Dr. Che Ping Cheng’s journey into medicine and science began in Nanjing, China, where he earned his M.D. degree from Nanjing Railway Medical University in 1977. His early academic path reflected a deep interest in understanding the intricacies of human health, particularly in cardiovascular physiology. Driven by a desire to expand his knowledge and research capabilities, Dr. Cheng pursued his Ph.D. in Physiology at Wayne State University School of Medicine in Detroit, Michigan, completing his degree in 1986. Under the mentorship of Dr. Robert S. Shepard, his doctoral work focused on exploring the mechanisms of cardiovascular response to volume loading in a canine model with tricuspid valvulectomy, setting a strong foundation for his lifelong focus on heart function and disease mechanisms.

🩺 Professional Endeavors

Following his academic training, Dr. Cheng embarked on postdoctoral studies at the Bowman Gray School of Medicine (now part of Wake Forest School of Medicine), where he continued to cultivate his expertise in internal medicine and cardiovascular physiology. Between 1986 and 1988, he served as a Postdoctoral Fellow under the guidance of Dr. William C. Little. His research during this period focused on ventricular dynamics and the physiological factors affecting active ventricular filling, which would later inform his broader work on heart failure and cardiac function. Dr. Cheng has since remained at Wake Forest School of Medicine, where he is currently a distinguished member of the Section on Cardiovascular Medicine.

🧪 Contributions and Research Focus

Dr. Cheng’s career has been characterized by a deep commitment to advancing the understanding of cardiac hemodynamics, ventricular interaction, and heart failure mechanisms. His research has explored how ventricular function responds under altered physiological states, and how these responses inform disease progression and treatment strategies. His early animal model studies have provided critical insights into the interplay between structural and functional changes in the heart, especially in the context of diastolic dysfunction and volume overload conditions. Dr. Cheng has also made significant strides in translating these findings to clinical contexts, influencing how cardiologists approach diagnosis and therapy.

🏅 Accolades and Recognition

Throughout his career, Dr. Cheng has received considerable recognition for his scholarly contributions. He is a Fellow of the American Heart Association (FAHA), an honor that reflects his standing in the field of cardiovascular research and his commitment to scientific excellence. His work has earned the respect of colleagues and institutions alike, leading to numerous invitations to contribute to collaborative projects, serve on peer-review panels, and mentor future generations of cardiovascular researchers.

🌍 Impact and Influence

Dr. Cheng’s work has had a lasting impact on both experimental and clinical cardiology. By elucidating the mechanistic basis of ventricular dysfunction, he has helped shift paradigms in heart failure management, particularly in the areas of ventricular interdependence and preload responsiveness. His research findings are frequently cited in textbooks and high-impact journals, and they continue to inform guidelines for cardiac care and interventions. Through his work at Wake Forest and beyond, Dr. Cheng has played a pivotal role in bridging laboratory discoveries with bedside applications.

👨‍🏫 Legacy and Mentorship

As a respected mentor and educator, Dr. Cheng has dedicated a significant portion of his career to training medical students, residents, and postdoctoral fellows. His mentorship has influenced numerous emerging scholars in cardiovascular medicine, many of whom have gone on to successful academic and clinical careers. His guidance combines a rigorous scientific approach with a deep sense of responsibility to patient care and scientific integrity, shaping a legacy that extends well beyond his own research output.

🔬 Future Contributions and Vision

Looking ahead, Dr. Cheng remains committed to the advancement of cardiovascular research, with a continued focus on uncovering the cellular and mechanical determinants of heart disease. His vision includes fostering collaborative projects that integrate biomedical engineering, imaging, and computational modeling to further understand cardiac performance. With decades of experience and a forward-thinking approach, Dr. Cheng’s future contributions are poised to leave a lasting mark on the field of translational cardiovascular medicine.

Publication

  1. Title: Increased CaMKII activation and contrast changes of cardiac β1-and β3-Adrenergic signaling pathways in a humanized angiotensinogen model of hypertension
    Authors: Sun, Xiaoqiang; Cao, Jing; Chen, Zhe; Ferrario, Carlos M.; Cheng, Cheping
    Year: 2023
    Journal: Heliyon

 

  1. Title: Calmodulin-dependent protein kinase II activation promotes kidney mesangial expansion in streptozotocin-induced diabetic mice
    Authors: Mikhailov, Alexei V.; Liu, Yixi; Cheng, Hengjie; Lin, Jen Jar; Cheng, Cheping
    Year: 2022
    Journal: Heliyon

 

  1. Title: Chronic GPR30 agonist therapy causes restoration of normal cardiac functional performance in a male mouse model of progressive heart failure: Insights into cellular mechanisms
    Authors: Zhang, Xiaowei; Li, Tiankai; Cheng, Hengjie; Groban, Leanne; Cheng, Cheping
    Year: 2021
    Journal: Life Sciences

 

  1. Title: Chronic Ca2+/calmodulin-dependent protein Kinase II inhibition rescues advanced heart failure
    Authors: Liu, Yixi; Shao, Qun; Cheng, Hengjie; Zhao, David Xiao Ming; Cheng, Cheping
    Year: 2021
    Journal: Journal of Pharmacology and Experimental Therapeutics

 

  1. Title: The Angiotensin-(1–12)/Chymase axis as an alternate component of the tissue renin angiotensin system
    Authors: Ferrario, Carlos M.; Groban, Leanne; Wang, Hao; Sun, Xuming; Ahmad, Sarfaraz
    Year: 2021
    Journal: Molecular and Cellular Endocrinology

 

  1. Title: Reversal of angiotensin-(1–12)-caused positive modulation on left ventricular contractile performance in heart failure: Assessment by pressure-volume analysis
    Authors: Li, Tiankai; Zhang, Zhi; Zhang, Xiaowei; Ferrario, Carlos M.; Cheng, Cheping
    Year: 2020
    Journal: International Journal of Cardiology

 

  1. Title: Female Heart Health: Is GPER the Missing Link?
    Authors: Groban, Leanne; Tran, Q. K.; Ferrario, Carlos M.; Wang, Hao; Lindsey, Sarah H.
    Year: (Not specified, but likely 2020 or 2021)
    Journal: (Not specified)

 

🏁 Conclusion

Dr. Cheng’s legacy is one of intellectual rigor, clinical relevance, and mentorship. His work has not only deepened the scientific understanding of cardiac physiology but has also shaped modern approaches to diagnosing and managing heart failure. With a career spanning continents and disciplines, Dr. Cheng continues to be a guiding force in cardiovascular medicine, and his future contributions are anticipated to further advance the frontiers of heart research and patient care.

 

Jiwei Nie | Emerging Areas in Neuroscience | Best Researcher Award

Dr. Jiwei Nie | Emerging Areas in Neuroscience | Best Researcher Award

Dr. Jiwei Nie, Haier Group, China.

Jiwei Nie is an accomplished Chinese researcher specializing in Artificial Intelligence-based Pattern Recognition and Intelligent Detection, with a strong focus on AI large models. His academic journey began with a Bachelor’s in Mechanical Design and Automation and evolved into a deeply integrated path through a Master’s and Ph.D. in Control Science and Engineering at Northeastern University. Throughout his doctoral research, he has made notable contributions to the field of Visual Place Recognition (VPR) for autonomous systems, publishing in prestigious journals such as IEEE Transactions on Intelligent Transportation Systems and IEEE Robotics and Automation Letters. Jiwei’s innovations—especially in lightweight, training-free image descriptors and adaptive texture fusion—have positioned him at the forefront of applied AI in robotics and automation. He has also presented at major international conferences and holds multiple patents.

Profile

Google Scholar

🎓 Early Academic Pursuits

 Jiwei Nie displayed a deep interest in engineering and innovation from an early age. His academic journey began at Hebei University of Science and Technology, where he pursued a Bachelor’s degree in Mechanical Design, Manufacturing, and Automation. His strong academic performance earned him first-class honors, and he graduated in July 2018. Motivated to delve deeper into the fusion of machinery and intelligence, he advanced to Northeastern University, completing his Master’s degree in Mechanical and Electronic Engineering by July 2020. Driven by a vision to integrate control systems with intelligent technologies, he enrolled in a PhD program in Control Science and Engineering under a prestigious Integrated Master-PhD track, further solidifying his expertise in the intelligent automation domain.

💼 Professional Endeavors

Jiwei’s professional development has been tightly interwoven with his academic path, where he has continuously applied theoretical insights to practical problems in Artificial Intelligence and Control Systems. As a member of the Communist Party of China, he approaches his work with a strong sense of discipline and public responsibility. His fluency in English, proven by his CET-6 certification, has enabled him to actively contribute to the global research community, engaging in international collaborations and conferences. Alongside his research, Jiwei has contributed to academic circles through mentorship roles and cross-institutional projects, making a significant impact both inside and outside his university.

🤖 Contributions and Research Focus

Jiwei Nie’s research is at the forefront of Artificial Intelligence-based Pattern Recognition and Intelligent Detection, with a special emphasis on AI Large Models. His work focuses on developing lightweight, efficient algorithms for Visual Place Recognition (VPR)—a critical capability for autonomous vehicles and robotic systems. He has pioneered new methods in saliency encoding, feature mixing, and texture fusion, leading to more robust and adaptive AI systems. Through these contributions, he has addressed real-world challenges in long-term navigation and intelligent perception, pushing the boundaries of control science and machine intelligence.

🏆 Accolades and Recognition

During his PhD, Jiwei published multiple high-impact articles in leading SCI-indexed journals. His paper in the IEEE Transactions on Intelligent Transportation Systems, titled “A Training-Free, Lightweight Global Image Descriptor for Long-Term Visual Place Recognition Toward Autonomous Vehicles”, has been particularly well-received and is ranked in Q1. Additional works in IEEE Robotics and Automation Letters have been ranked in Q2, highlighting his innovations such as MixVPR++ and Efficient Saliency Encoding. Furthermore, Jiwei’s presence has been notable at world-class conferences like ICPR, ICRA, and IROS, where he presented his work to a global audience of peers and experts. He also holds several patents, including an invention patent, and continues to submit further manuscripts to top-tier venues.

🌍 Impact and Influence

Jiwei’s research has had a significant influence on the future of intelligent transportation and autonomous systems. His development of training-free VPR models has contributed to making autonomous navigation more scalable and cost-effective, especially in dynamic environments where traditional AI systems fail. His proposed methods are not only academically rigorous but are also computationally efficient, paving the way for real-world deployment. Through his innovation and academic collaborations, he has helped bridge the gap between theoretical AI models and practical engineering applications, which is vital for industries moving toward Industry 4.0 and smart mobility solutions.

🧠 Legacy and Future Contributions

Looking ahead, Jiwei Nie aspires to deepen his research in generalized large AI models, expanding the scalability and generalization abilities of pattern recognition systems across domains beyond transportation—such as smart surveillance, industrial robotics, and medical imaging. His planned future publications and continued patent filings reflect a strong ambition to lead the next generation of intelligent systems research. Jiwei is committed to fostering innovation that aligns with both academic excellence and societal needs, aiming to establish himself as a pioneering researcher and mentor in the evolving field of intelligent detection and AI integration.

🔬 Vision in AI and Control Engineering

Jiwei Nie stands as a rising expert in the convergence of Artificial Intelligence, Control Science, and Robotic Vision, a field essential for the future of smart systems and automation. His deep technical knowledge, coupled with a strategic vision, positions him to contribute not only as a researcher but also as a thought leader in AI-driven engineering. With a career rooted in innovation and societal benefit, his trajectory points toward a legacy of breakthroughs that will influence smart cities, autonomous systems, and global AI research landscapes for years to come.

Publication

  • Title: A survey of extrinsic parameters calibration techniques for autonomous devices
    Authors: J Nie, F Pan, D Xue, L Luo
    Year: 2021

 

  • Title: A training-free, lightweight global image descriptor for long-term visual place recognition toward autonomous vehicles
    Authors: J Nie, JM Feng, D Xue, F Pan, W Liu, J Hu, S Cheng
    Year: 2023

 

  • Title: Forest: A lightweight semantic image descriptor for robust visual place recognition
    Authors: P Hou, J Chen, J Nie, Y Liu, J Zhao
    Year: 2022

 

  • Title: A novel image descriptor with aggregated semantic skeleton representation for long-term visual place recognition
    Authors: J Nie, JM Feng, D Xue, F Pan, W Liu, J Hu, S Cheng
    Year: 2022

 

  • Title: Efficient saliency encoding for visual place recognition: Introducing the lightweight pooling-centric saliency-aware VPR method
    Authors: J Nie, D Xue, F Pan, Z Ning, W Liu, J Hu, S Cheng
    Year: 2024

 

  • Title: 3D semantic scene completion and occupancy prediction for autonomous driving: A survey
    Authors: G Xu, W Liu, Z Ning, Q Zhao, S Cheng, J Nie
    Year: 2023

 

  • Title: A Novel Image Descriptor with Aggregated Semantic Skeleton Representation for Long-term Visual Place Recognition
    Authors: N Jiwei, F Joe-Mei, X Dingyu, P Feng, L Wei, H Jun, C Shuai
    Year: 2022

 

  • Title: Optic Disc and Fovea Localization based on Anatomical Constraints and Heatmaps Regression
    Authors: L Luo, F Pan, D Xue, X Feng, J Nie
    Year: 2021

 

  • Title: A Novel Fractional-Order Discrete Grey Model with Initial Condition Optimization and Its Application
    Authors: Y Liu, F Pan, D Xue, J Nie
    Year: 2021

 

  • Title: EPSA-VPR: A lightweight visual place recognition method with an Efficient Patch Saliency-weighted Aggregator
    Authors: J Nie, Q Zhào, D Xue, F Pan, W Liu
    Year: 2025

 

🔚 Conclusion

With a solid foundation in engineering and control systems and an innovative mindset in artificial intelligence, Jiwei Nie is poised to become a key figure in the evolution of intelligent automation technologies. His work contributes not only to academic theory but also to practical applications that influence the development of autonomous vehicles, intelligent detection systems, and large AI model architectures. As he approaches the completion of his Ph.D. in early 2025, Jiwei is expected to continue pushing technological boundaries, inspiring future advancements in AI research and real-world intelligent systems deployment.