Xiaobing Yan | Neurotechnology | Best Researcher Award

Prof. Xiaobing Yan | Neurotechnology | Best Researcher Award

Prof. Xiaobing Yan, Hebei University, China.

Professor Xiaobing Yan is a distinguished researcher specializing in novel memory devices and memristor-based brain-inspired chip technologies. As a Senior Member of IEEE and a reviewer for leading journals, he has made significant contributions to the field of neuromorphic engineering. His outstanding achievements include recognition as a Young Changjiang Scholar and a Young Top-notch Talent under China’s National Ten Thousand Talents Program. With over 120 high-impact publications, 5,600+ citations, and an H-index of 40, he is globally recognized among the top 2% of scientists. His research has been supported by several prestigious national and provincial funding programs.

Profile

Scopus

🎓 Early Academic Pursuits

Xiaobing Yan embarked on his academic journey with a deep passion for electronics and information engineering. His early years were marked by an unwavering dedication to understanding the complexities of memory devices and neuromorphic systems. As he progressed through his studies, his curiosity and drive led him to explore the intersection of artificial intelligence and hardware development. His rigorous academic training laid a solid foundation for his future contributions to next-generation computing technologies.

💪 Professional Endeavors

Currently serving as a Professor at the Institute of Life Science and Green Development, Hebei University, Xiaobing Yan has established himself as a distinguished leader in the field of electronic engineering. He is a Doctoral Supervisor and a Senior Member of IEEE, a testament to his vast expertise and influence in the scientific community. His role extends beyond academia, as he actively engages in national-level research programs and collaborates with top-tier research institutions. His professional journey is a testament to his commitment to pioneering advancements in neuromorphic computing and memristor-based brain-inspired chip technologies.

🤖 Contributions and Research Focus

Xiaobing Yan’s research primarily revolves around novel memory devices and brain-like computing systems. His work has been instrumental in the advancement of memristor-based chip technologies, which hold the potential to revolutionize artificial intelligence hardware. By bridging the gap between neuroscience and semiconductor innovation, he is contributing to the development of energy-efficient, high-performance computing architectures. His research projects, funded by prestigious national programs, aim to push the boundaries of nanoelectronics and intelligent systems.

🏆 Accolades and Recognition

Xiaobing Yan’s groundbreaking work has earned him widespread recognition. In 2019, he was honored as a Young Changjiang Scholar by the Ministry of Education and selected as a Young Top-notch Talent under the National Ten Thousand Talents Program. In 2024, he further cemented his legacy by winning the Excellence Award at the National Disruptive Innovation Technology Competition. His contributions are not only recognized in China but also on a global scale, as he has been listed among the top 2% of scientists worldwide by Stanford University.

🌟 Impact and Influence

With over 120 high-impact publications and more than 5,600 citations, Xiaobing Yan’s research has significantly shaped the field of electronics and artificial intelligence. His H-index of 40 reflects the depth and relevance of his contributions. As a reviewer for prestigious journals such as Nature Electronics, Advanced Materials, and ACS Nano, he plays a crucial role in shaping the direction of cutting-edge research. His influence extends beyond his publications, as he mentors young researchers and fosters collaborations that drive innovation in neuromorphic computing.

🚀 Legacy and Future Contributions

As a leader in disruptive technology and nanoelectronics, Xiaobing Yan is poised to continue pushing the boundaries of scientific discovery. His ongoing research projects, including multiple National Key R&D initiatives and collaborations with leading institutions, demonstrate his commitment to pioneering breakthroughs in brain-inspired computing. With his vision and expertise, he is set to leave a lasting legacy in the development of next-generation intelligent systems, shaping the future of artificial intelligence and semiconductor technology.

Publication

  1. In situ training of an in-sensor artificial neural network based on ferroelectric photosensors

    • Authors: H. Lin, Haipeng; J. Ou, Jiali; Z. Fan, Zhen; X. Gao, Xingsen; J. Liu, Junming
    • Year: 2025

 

  1. Ultra robust negative differential resistance memristor for hardware neuron circuit implementation

    • Authors: Y. Pei, Yifei; B. Yang, Biao; X. Zhang, Xumeng; S. Li, Shushen; X. Yan, Xiaobing
    • Year: 2025

 

  1. Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models

    • Authors: W. Yue, Wenshuo; K. Wu, Kai; Z. Li, Zhiyuan; R. Huang, Ru; Y. Yang, Yuchao
    • Year: 2025

 

  1. Memristor-based feature learning for pattern classification

    • Authors: T. Shi, Tuo; L. Gao, Lili; Y. Tian, Yang; X. Yan, Xiaobing; Q. Liu, Qi
    • Year: 2025

 

  1. Harnessing spatiotemporal transformation in magnetic domains for nonvolatile physical reservoir computing

    • Authors: J. Zhou, Jing; J. Xu, Jikang; L. Huang, Lisen; X. Yan, Xiaobing; S.T. Lim, Sze Ter
    • Year: 2025

 

  1. Flexoelectric Effect in Thin Films: Theory and Applications

    • Authors: X. Jia, Xiaotong; R. Guo, Rui; J. Chen, Jingsheng; X. Yan, Xiaobing
    • Year: 2025

 

  1. Deoxyribonucleic acid brick crystals-based memristor as an artificial synapse for neuromorphic computing

    • Authors: Z. Wang, Zhongrong; X. Liu, Xinran; J. Li, Jiahang; J. Lou, Jianzhong; X. Yan, Xiaobing
    • Year: 2025

 

  1. Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors

    • Authors: Z. Guo, Zhenqiang; G. Duan, Guojun; Y. Zhang, Yinxing; Y. Faraj, Yousef; X. Yan, Xiaobing
    • Year: 2025

 

  1. Achieving over 10 % efficiency in kesterite solar cells via selenium-free annealing

    • Authors: Q. Zhou, Qing; Y. Cong, Yijia; H. Li, Hao; Y. Sun, Yali; W. Yu, Wei
    • Year: 2024

 

  1. Hardware implementation of memristor-based artificial neural networks

  • Authors: F.L. Aguirre, Fernando L.; A. Sebastian, Abu; M. Le Gallo, Manuel; S. Matias Pazos, Sebastian; M. Lanza, Mario
  • Year: 2024

 

Conclusion

Professor Yan’s work plays a pivotal role in advancing memory technology and brain-inspired computing. His extensive research contributions and leadership in high-impact projects underscore his expertise in developing next-generation computing technologies. His global recognition and numerous accolades highlight his influence in the field, positioning him as a key figure in neuromorphic engineering and memory device innovation.

 

 

Saba Hesaraki | Neurotechnology | Best Researcher Award

Ms. Saba Hesaraki | Neurotechnology | Best Researcher Award

Ms. Saba Hesaraki,  Islamic Azad University science and research branch, Iran.

Saba Hesaraki is a computer engineer specializing in artificial intelligence (AI), particularly in medical imaging and generative AI. She holds a Master’s degree in Computer Engineering from Islamic Azad University, Science and Research Branch, Tehran, where her thesis focused on breast cancer image segmentation using an improved 3D U-Net++ model. She has a strong academic background with high GPAs in both her bachelor’s and master’s programs.

Profile

Google Scholar

🌱 Early Academic Pursuits

Saba Hesaraki embarked on her academic journey with a deep passion for computer engineering, earning her Bachelor of Science in Software Engineering from Islamic Azad University, West Tehran Branch. With an outstanding GPA of 17.22 out of 20.0, she demonstrated an early inclination toward problem-solving and artificial intelligence. Her intellectual curiosity and commitment to innovation led her to pursue a Master’s degree in the same domain at Islamic Azad University, Science and Research Branch, Tehran. Her thesis, titled “Segmentation of Breast Cancer Images Using Improved 3D U-Net++ Model,” under the supervision of Dr. Maryam Rastgarpour, showcases her dedication to advancing medical imaging technologies through AI-driven solutions. With an exceptional GPA of 18.12 out of 20.0, her academic excellence laid the foundation for a remarkable research career.

💼 Professional Endeavors

Saba’s professional journey reflects her deep expertise in artificial intelligence, particularly in the realms of generative AI and medical imaging. She has worked remotely in various esteemed organizations, contributing her skills to groundbreaking AI projects. Her role as a Generative AI Engineer at Care Vox in Mountain View, California, and Nexus in San Jose, California, enabled her to develop innovative AI-driven solutions. Prior to this, she made significant contributions as a Computer Vision Engineer at Koga Studio and the Quantitative MR Imaging and Spectroscopy Group in Tehran. Her engagement as an NLP Researcher at Asr Gooyesh Pardaz further showcases her versatility in the field of AI. Through these roles, she has gained profound experience in AI-based medical diagnostics, image segmentation, and sustainable AI development, paving the way for impactful innovations.

📚 Contributions and Research Focus

As a dedicated researcher, Saba’s work has revolved around the intersection of AI and healthcare, particularly medical image segmentation and generative AI applications. Her research interests extend to AI-driven personalized medicine and sustainable AI solutions. She has co-authored multiple research papers, including “Capsule Fusion for Extracting Psychiatric Stressors for Suicide from Twitter” and “UNet++ and LSTM Combined Approach for Breast Ultrasound Image Segmentation.” Her work reflects a keen interest in leveraging AI to solve complex medical challenges, from cancer detection to mental health analysis. Her research on classifying 3D point cloud objects using hybrid neural networks also highlights her multidisciplinary expertise.

🏆 Accolades and Recognition

Saba’s dedication to AI research has been recognized through her academic achievements and professional contributions. Her IELTS score of 7.5 and GRE score of 332 underscore her strong analytical and communication skills, essential for global collaboration in AI research. Her research papers have been under review and submission in reputable scientific journals, further solidifying her presence in the AI and medical imaging research community. The recognition she has garnered through collaborations and innovative contributions establishes her as an influential figure in AI-driven healthcare solutions.

🌍 Impact and Influence

Saba’s work extends beyond research, as she actively contributes to the global AI community by developing cutting-edge AI applications for real-world problems. Her role in AI for sustainable development and AI-driven personalized medicine signifies her commitment to leveraging technology for societal benefit. Her experience in deep learning frameworks like PyTorch and Keras, along with her expertise in machine learning algorithms, has allowed her to shape AI-driven healthcare innovations that have the potential to save lives and enhance medical diagnostics. Through collaborations and mentorship, she inspires the next generation of AI researchers to push the boundaries of technological advancements.

🚀 Legacy and Future Contributions

As an AI researcher and engineer, Saba continues to drive innovation in medical imaging and generative AI. Her aspirations include advancing AI methodologies for early disease detection, improving healthcare accessibility through AI-driven solutions, and fostering AI applications in sustainable development. Her ability to blend technical expertise with a deep understanding of healthcare challenges positions her as a leader in the field. With a promising future ahead, she remains dedicated to exploring new AI frontiers that will revolutionize medical imaging, AI ethics, and beyond.

Publication

Title: A Comprehensive Analysis on Machine Learning based Methods for Lung Cancer Level Classification
Authors: S. Farshchiha, S. Asoudeh, M.S. Kuhshuri, M. Eisaeid, M. Azadie, S. Hesaraki
Year: 2025

Title: Breast Cancer Ultrasound Image Segmentation Using Improved 3D Unet++
Authors: S. Hesaraki, A.S. Mohammed, M. Eisaei, R. Mousa
Year: 2025

Title: BERTCaps: BERT Capsule for Persian Multi-Domain Sentiment Analysis
Authors: M. Memari, S.M. Nejad, A.P. Rabiei, M. Eisaei, S. Hesaraki
Year: 2024

Title: UNet++ and LSTM Combined Approach for Breast Ultrasound Image Segmentation
Authors: S. Hesaraki, M. Akbari, R. Mousa
Year: 2024

Title: Classifying Objects in 3D Point Clouds Using Recurrent Neural Network: A GRU LSTM Hybrid Approach
Authors: R. Mousa, M. Khezli, M. Azadi, V. Nikoofard, S. Hesaraki
Year: 2024

Title: CapsF: Capsule Fusion for Extracting Psychiatric Stressors for Suicide from Twitter
Authors: M.A. Dadgostarnia, R. Mousa, S. Hesaraki
Year: 2024

Conclusion

Saba Hesaraki is a highly skilled and motivated AI engineer with a strong academic and research background in medical imaging and generative AI. Her experience across various AI-driven projects, coupled with technical expertise in deep learning and computer vision, positions her as a valuable contributor to the field. With multiple publications and collaborations in AI and machine learning, she continues to make significant advancements in healthcare applications using AI.

John Vincent Sanchez Orti | Biomarkers in Neurocognition | Young Scientist Award

Dr. John Vincent Sanchez Orti | Biomarkers in Neurocognition | Young Scientist Award

Dr. Joan Vicent Sánchez Ortí, Health research institute,  Spain.

Joan Vicent Sánchez Ortí is a Clinical Psychologist and Neuropsychologist currently working as a Research Technician at the Instituto de Investigación Sanitaria – INCLIVA. He is also a predoctoral researcher affiliated with CIBERSAM (Group 24, Universitat de València). His academic background includes a Bachelor’s degree in Psychology (2016), a Master’s in General Health Psychology (2019), and a Master’s in Basic and Applied Neurosciences (2021), all from Universitat de València. He is currently pursuing a Ph.D. in Medicine.

Profile

Google Scholar

Orcid

🧠 A Passion for Understanding the Mind

Joan Vicent Sánchez Ortí was born on August 6, 1994, with an innate curiosity about the complexities of human cognition. From an early age, he displayed a deep interest in psychology and neuroscience, which led him to pursue an academic path dedicated to unraveling the mysteries of the brain. His journey began at the Universitat de València, where he obtained his degree in Psychology in 2016. Motivated by his growing fascination with neuropsychology, he continued his studies, earning a Master’s in General Health Psychology in 2019 and a Master’s in Basic and Applied Neurosciences in 2021. His dedication to advancing medical science led him to enroll in an official Doctorate Program in Medicine at the same institution.

🏥 Bridging Psychology and Neuroscience in Professional Practice

Currently serving as a Neuropsychologist and Research Technician at the Health Research Institute (INCLIVA) in Spain, Joan Vicent plays a vital role in understanding cognitive impairments associated with severe mental disorders. His affiliation with the Biomedical Research Center in Mental Health Network (CIBERSAM) – Group 24 at the Universitat de València has allowed him to contribute significantly to groundbreaking studies. His expertise lies in assessing neurocognitive deficits, biomarkers, and epigenetic factors, aiming to enhance the diagnosis and treatment of psychiatric and neurological conditions.

🔬 Advancing Research in Neurocognitive Deficits and Mental Health

Joan Vicent’s research delves into the intricate connections between brain function, cognition, and mental health. His studies focus on identifying early biomarkers of cognitive decline, exploring epigenetic influences, and evaluating social functioning and quality of life in patients suffering from severe mental disorders. His contributions have been instrumental in improving the understanding of conditions such as schizophrenia, bipolar disorder, and neurodegenerative diseases, providing valuable insights for clinical interventions.

🏆 Recognized for Excellence in Neuroscience and Psychology

Through his commitment to scientific discovery, Joan Vicent has garnered recognition in the field of neuroscience and psychology. His contributions to neuropsychology and mental health research have positioned him as a promising figure in cognitive science. His work is widely acknowledged for its impact on the development of new therapeutic approaches and diagnostic techniques. With a strong academic and research background, he continues to be an influential voice in the study of cognitive impairment.

🌍 Impacting Lives Through Mental Health Research

Beyond academic achievements, Joan Vicent’s work has real-world implications, improving the quality of life for individuals facing cognitive challenges. His research contributes to developing more effective treatments, enhancing diagnostic accuracy, and fostering a better understanding of mental disorders. Through his role at INCLIVA and CIBERSAM, he actively collaborates with interdisciplinary teams, ensuring that his findings are translated into clinical practice, ultimately benefiting patients and healthcare professionals alike.

🚀 Paving the Way for Future Innovations in Neuropsychology

With a strong foundation in psychology, neuroscience, and medicine, Joan Vicent remains dedicated to pushing the boundaries of cognitive research. His ongoing studies aim to integrate cutting-edge techniques in neuroimaging, genetics, and artificial intelligence to refine the understanding of neurocognitive disorders. His ambition is to contribute to the development of personalized medicine, where treatments are tailored to an individual’s neurobiological and psychological profile, revolutionizing mental healthcare.

🔮 A Vision for a Healthier, Cognitively Resilient Future

Looking ahead, Joan Vicent Sánchez Ortí envisions a world where mental health is better understood, diagnosed, and treated with precision. His dedication to neuropsychology and cognitive research will continue to shape the future of mental healthcare, inspiring new generations of scientists and clinicians. As he advances in his career, his unwavering commitment to improving lives through research stands as a testament to his passion and perseverance in the field of neuroscience.

Publication

  • Manual motor speed dysfunction as a neurocognitive endophenotype in euthymic bipolar disorder patients and their healthy relatives. Evidence from a 5-year follow-up study
    P Correa-Ghisays, V Balanzá-Martínez, G Selva-Vera, J Vila-Francés, …
    2017

 

  • Grip Strength, Neurocognition, and social functioning in people With Type-2 diabetes mellitus, major depressive disorder, bipolar disorder, and schizophrenia
    M Aliño-Dies, JV Sanchez-Orti, P Correa-Ghisays, V Balanzá-Martinez, …
    2020

 

  • Visual memory dysfunction as a neurocognitive endophenotype in bipolar disorder patients and their unaffected relatives. Evidence from a 5-year follow-up Valencia study
    P Correa-Ghisays, JV Sánchez-Ortí, R Ayesa-Arriola, E Setién-Suero, …
    2019

 

  • Specific metabolic syndrome components predict cognition and social functioning in people with type 2 diabetes mellitus and severe mental disorders
    JV Sanchez‐Orti, V Balanzá‐Martinez, P Correa‐Ghisays, G Selva‐Vera, …
    2022

 

  • Immune–Inflammatory Biomarkers Predict Cognition and Social Functioning in Patients With Type 2 Diabetes Mellitus, Major Depressive Disorder, Bipolar Disorder, and …
    M Garés-Caballer, JV Sánchez-Ortí, P Correa-Ghisays, …
    2022

 

  • Probiotic, prebiotic, synbiotic and fermented food supplementation in psychiatric disorders: A systematic review of clinical trials
    C Ribera, JV Sánchez-Ortí, G Clarke, W Marx, S Mörkl, …
    2024

 

  • Transdiagnostic neurocognitive deficits in patients with type 2 diabetes mellitus, major depressive disorder, bipolar disorder, and schizophrenia: A 1-year follow-up study
    P Correa-Ghisays, JV Sanchez-Orti, V Balanza-Martinez, G Selva-Vera, …
    2022

 

  • Inflammation and lipid metabolism as potential biomarkers of memory impairment across type 2 diabetes mellitus and severe mental disorders
    JV Sanchez-Orti, P Correa-Ghisays, V Balanza-Martinez, G Selva-Vera, …
    2023

 

  • MICEmi: A method to identify cognitive endophenotypes of mental illnesses
    P Correa-Ghisays, JV Sanchez-Orti, V Balanza-Martinez, I Fuentes-Dura, …
    2022

 

  • Specific immune-inflammatory profiles and neurocognitive deficits predict illness trajectories in people with type 2 diabetes mellitus or psychiatric disorders
    JV Sanchez-Orti, P Correa-Ghisays, V Balanza-Martinez, G Selva-Vera, …
    2025

 

Conclusion 🎯

Joan Vicent Sánchez Ortí’s dedication to neuroscience and mental health research positions him as an influential figure in the field. His expertise bridges psychology, medicine, and genetics, offering innovative solutions for cognitive disorders. With a strong commitment to improving lives through research, his work has already made a meaningful impact and will continue to shape the future of mental healthcare, neuropsychology, and personalized medicine. As he advances in his career, his passion and contributions will undoubtedly lead to groundbreaking discoveries in cognitive science.

Shilin Luo | Neurogenetics and Molecular Neuroscience | Best Researcher Award

Prof. Shilin Luo | Neurogenetics and Molecular Neuroscience | Best Researcher Award

Prof. Shilin Luo, Xiangya Hospital, Central South University, China.

Dr. Shilin Luo is a leading expert in neuropharmacology and medicinal chemistry, with a strong academic background in traditional Chinese medicine and modern pharmacology. His research focuses on the pathogenesis of neurodegenerative diseases and the development of innovative drug therapies. Through his work at Xiangya Hospital, Central South University, and previous research at Emory University, he has made significant contributions to understanding neurological disorders. His studies on animal models and risk genes have paved the way for novel treatment strategies, earning him international recognition.

Profile

Scopus

Orcid

 

🎓 Early Academic Pursuits

Dr. Shilin Luo’s journey into the world of medical science began with a deep-rooted passion for understanding the complexities of neurological diseases. He earned his Bachelor’s degree in Chinese Materia Medica from Shenyang Pharmaceutical University, where he developed a strong foundation in traditional Chinese medicine and pharmacology. With an insatiable thirst for knowledge, he further pursued a Ph.D. in Medicinal Chemistry at China Pharmaceutical University, specializing in the research of active ingredients in natural products. Under the mentorship of Prof. Wencai Ye, a distinguished scholar, Dr. Luo honed his expertise in medicinal chemistry, paving the way for groundbreaking discoveries in neuropharmacology.

👨‍🎓 Professional Endeavors

To deepen his expertise, Dr. Luo embarked on postdoctoral research at Emory University’s School of Medicine in the Department of Pathology and Laboratory Medicine. Working under the esteemed Prof. Keqiang Ye, he focused on neurobiology and neuropharmacology, contributing significantly to the understanding of neurodegenerative diseases. His research provided novel insights into the molecular mechanisms underlying neurological disorders, positioning him as a leading figure in the field. He later took on a pivotal role as a professor in the Department of Neurology at Xiangya Hospital, Central South University, where he continues to mentor young scientists and advance medical research.

🧪 Contributions and Research Focus

Dr. Luo’s research is primarily dedicated to uncovering the pathogenesis of neurodegenerative diseases and developing therapeutic interventions. His work in animal models of pathogenic and risk genes for neurological disorders has been instrumental in identifying potential drug targets. By integrating traditional Chinese medicine with modern pharmacology, he has contributed to the development of innovative neuroprotective agents. His studies on the molecular mechanisms of neuronal degeneration have led to promising advancements in combating conditions such as Alzheimer’s and Parkinson’s disease.

🏆 Accolades and Recognition

Throughout his career, Dr. Luo has been widely recognized for his groundbreaking contributions to neuropharmacology. His research has been published in high-impact scientific journals, earning him international acclaim. His dedication to scientific excellence has garnered prestigious awards, and he is frequently invited to deliver keynote lectures at global conferences. His work continues to inspire fellow researchers, solidifying his reputation as a distinguished scientist in neurological drug development.

🏰 Impact and Influence

Dr. Luo’s impact extends beyond the laboratory, as he actively contributes to the medical community through mentorship and collaboration. His efforts in integrating traditional Chinese medicinal principles with cutting-edge pharmacological approaches have opened new avenues for drug discovery. His research findings have not only influenced academic discourse but have also laid the groundwork for potential clinical applications, bringing hope to patients suffering from neurodegenerative diseases.

⚛️ Legacy and Future Contributions

As a visionary scientist, Dr. Luo continues to push the boundaries of neurological research. His commitment to translational medicine aims to bridge the gap between laboratory discoveries and clinical applications. By fostering interdisciplinary collaborations and mentoring the next generation of researchers, he is shaping the future of neuropharmacology.

 

Publication

  • Disease-modifying therapies for Alzheimer’s disease: Clinical trial progress and opportunity
    Authors: Yujie Zhang, Jie Chen, Yanru Li, Bin Jiao, Shilin Luo
    Year: 2025

 

  • The role of the probiotic Akkermansia muciniphila in brain functions: insights underpinning therapeutic potential
    Authors: Ruiling Xu, Yuxuan Zhang, Shurui Chen, Yaohui Zeng, Xuan Fu, Ti Chen, Shilin Luo, Xiaojie Zhang
    Year: 2023

 

  • Nonviral delivery systems for antisense oligonucleotide therapeutics
    Authors: Si Huang, Xin-Yan Hao, Yong-Jiang Li, Jun‑Yong Wu, Da-Xiong Xiang, Shilin Luo
    Year: 2022

 

  • The Microglial membrane receptor TREM2 mediates exosome secretion to promote phagocytosis of amyloid‐β by microglia
    Authors: Si Huang, Xiaoli Liao, Junyong Wu, Xiaojie Zhang, Yamin Li, Daxiong Xiang, Shilin Luo
    Year: 2022

 

  • Correction: Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine
    Authors: Not explicitly listed
    Year: 2021

 

  • Polygonatum sibiricum Polysaccharides Protect against MPP‐Induced Neurotoxicity via the Akt/mTOR and Nrf2 Pathways
    Authors: Si Huang, Haiyan Yuan, Wenqun Li, Xinyi Liu, Xiaojie Zhang, Daxiong Xiang, Shilin Luo, Guodong Zhang
    Year: 2021

 

  • Bushen-Tiansui Formula Improves Cognitive Functions in an Aβ1–42 Fibril-Infused Rat Model of Alzheimer’s Disease
    Authors: Chenxia Sheng, Panpan Xu, Xinyi Liu, Weijun Peng, Daxiong Xiang, Shilin Luo
    Year: 2020

 

  • Osteogenesis activity of isocoumarin a through the activation of the PI3K-Akt/Erk cascade-activated BMP/RUNX2 signaling pathway
    Authors: Not explicitly listed
    Year: 2019

 

  • Akt Phosphorylates NQO1 and Triggers its Degradation, Abolishing Its Antioxidative Activities in Parkinson’s Disease
    Authors: Shilin Luo, Seong Su Kang, Zhi-Hao Wang, Xia Liu, Julia X Day, Zhiping Wu, Junmin Peng, Daxiong Xiang, Wolfdieter Springer, Keqiang Ye
    Year: 2019

 

  • Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile
    Authors: Not explicitly listed
    Year: 2018

 

Conclusion

Dr. Luo’s unwavering dedication to neurological research continues to shape the future of neuropharmacology. His innovative approach, combining traditional medicinal insights with modern scientific advancements, has the potential to revolutionize drug development for neurodegenerative diseases. As a mentor, researcher, and pioneer in his field, his contributions will leave a lasting impact on both academia and clinical medicine, offering hope for more effective treatments in the years to come.