William Mills III | Translational Neuroscience | Best Researcher Award

Dr. William Mills III | Translational Neuroscience | Best Researcher Award

Dr. William Mills III, University of Virginia, United States.

William A. Mills III, known as Tré, is a dedicated neuroscientist whose academic and professional journey reflects a strong commitment to translational and interdisciplinary research. With foundational training from Virginia Tech and international exposure through studies in China, Tré has developed a deep expertise in neurovascular coupling and glial biology. His doctoral and postdoctoral research has significantly advanced our understanding of how microglia and aging influence the brain’s vascular systems. Through prestigious fellowships and awards, including the NIH K99/R00 and the AHA Postdoctoral Fellowship, Tré has proven his potential to become a leading figure in neuroscience. His work bridges multiple scientific disciplines and focuses on uncovering mechanisms that contribute to neurological aging and disease.

Profile

Google Scholar

🎓 Early Academic Pursuits

William A. Mills III, fondly known as Tré, laid a solid foundation for his scientific career through rigorous and diverse academic training. He earned his Bachelor of Science degree in Biological Sciences from Virginia Tech in 2014, where he was actively involved in research labs focusing on virology, behavioral ecology, and disease ecology. His passion for cross-cultural and interdisciplinary learning was evident as he pursued Chinese language studies at Xi’an Jiaotong-Liverpool University from 2014 to 2015. This global academic exposure was followed by his Ph.D. in Translational Biology, Medicine & Health with a neuroscience focus at Virginia Tech (2015–2021), where he developed a strong interest in neurovascular and glial biology. These formative experiences created a well-rounded and curious scientist ready to tackle complex biomedical questions.

🧠 Professional Endeavors in Neuroscience

Tré’s professional journey took a pivotal turn when he joined the Eyo Lab at the University of Virginia as a Postdoctoral Research Fellow in 2021. His research investigates the intricate role of microglia in regulating capillary basal tone and neurovascular coupling—an area that sits at the intersection of neuroimmunology and vascular biology. His graduate years in the Sontheimer Lab had already shaped his expertise in glial signaling pathways, particularly focusing on the effects of aging on gliovascular interactions involving EGFR and pSTAT3. These experiences underscore a continuous commitment to understanding the cellular mechanisms that underpin brain function and disease.

🧪 Contributions and Research Focus

Throughout his research career, Tré has contributed significantly to the field of neurovascular biology and glial cell research. His scientific curiosity has spanned from studying the cellular mechanics of viral encapsidation in early projects to evaluating semaphorin roles in cardiovascular pathology. Notably, his doctoral work on gliovascular plasticity and his current postdoctoral focus on microglia’s role in cerebral blood flow regulation highlight his interdisciplinary approach. By bridging neuroscience, immunology, and vascular biology, he is shedding light on the fundamental processes that maintain brain health and how their disruption leads to age-related and neurodegenerative diseases.

🏅 Accolades and Recognition

Tré’s outstanding research potential has been recognized by several prestigious institutions. He was awarded the American Heart Association Career Development Award (which he respectfully declined), the American Heart Association Postdoctoral Fellowship (25POST1376070), and the UVA Brain Institute Postdoctoral Research Fellowship. In addition, he secured training support through the UVA Cardiovascular Research Center T32 Training Grant, reflecting the strong institutional belief in his capabilities. Most notably, he earned the competitive NIH K99/R00 Pathway to Independence Award, a mark of distinction for early-career researchers poised to transition to faculty positions.

🔬 Impact and Influence in Translational Neuroscience

Tré’s research contributions are highly translational in nature, linking basic cellular mechanisms to potential therapeutic implications in aging, stroke, and neurodegeneration. His work on microglial function in neurovascular coupling could provide new insights into how blood flow dysregulation contributes to cognitive decline and dementia. By exploring how aging alters glial and vascular interactions, Tré’s research holds the promise to inform interventions targeting the brain’s support systems to preserve function in aging populations. His influence is also visible through collaborative projects, lab mentorship, and participation in international research endeavors.

🌍 Legacy and Future Contributions

Looking ahead, Tré is poised to leave a lasting legacy in the field of neurovascular biology. With a trajectory marked by intellectual rigor, global awareness, and translational relevance, he is expected to lead pioneering studies that will redefine our understanding of brain support systems in health and disease. The foundation laid by his NIH K99/R00 award positions him well to establish an independent research program, where he will likely mentor future scientists and push the boundaries of neuroscience through integrative and innovative research methodologies.

🧬 A Champion of Interdisciplinary Science

A defining trait of Tré’s career is his seamless integration of diverse scientific fields—ranging from immunology and neuroscience to cardiovascular biology and behavioral ecology. This interdisciplinary ethos not only enriches his research output but also positions him as a bridge-builder in science, capable of uniting different perspectives to address complex biomedical challenges. His academic journey from microbiology and animal behavior to glial biology exemplifies a dynamic scientist committed to evolving with the science, while remaining grounded in his passion for discovery.

Publication

  • Title: Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice
    Authors: K. Bisht, K.A. Okojie, K. Sharma, D.H. Lentferink, Y.Y. Sun, H.R. Chen, …
    Year: 2021

 

  • Title: Spatially expandable fiber-based probes as a multifunctional deep brain interface
    Authors: S. Jiang, D.C. Patel, J. Kim, S. Yang, W.A. Mills III, Y. Zhang, K. Wang, Z. Feng, …
    Year: 2020

 

  • Title: Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age
    Authors: W.A. Mills III, A.L.M. Woo, S. Jiang, J. Martin, D. Surendran, M. Bergstresser, …
    Year: 2022

 

  • Title: Lactobacillus rescues postnatal neurobehavioral and microglial dysfunction in a model of maternal microbiome dysbiosis
    Authors: Y. Lebovitz, E.A. Kowalski, X. Wang, C. Kelly, M. Lee, V. McDonald, R. Ward, …
    Year: 2019

 

  • Title: Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes
    Authors: S.C. Campbell, C. Muñoz-Ballester, L. Chaunsali, W.A. Mills III, J.H. Yang, …
    Year: 2020

 

  • Title: LRRTM1 underlies synaptic convergence in visual thalamus
    Authors: A. Monavarfeshani, G. Stanton, J. Van Name, K. Su, W.A. Mills III, K. Swilling, …
    Year: 2018

 

  • Title: EphA4/Tie2 crosstalk regulates leptomeningeal collateral remodeling following ischemic stroke
    Authors: B. Okyere, W.A. Mills, X. Wang, M. Chen, J. Chen, A. Hazy, Y. Qian, J.B. Matson, …
    Year: 2020

 

  • Title: Nano-optoelectrodes integrated with flexible multifunctional fiber probes by high-throughput scalable fabrication
    Authors: S. Jiang, J. Song, Y. Zhang, M. Nie, J. Kim, A.L. Marcano, K. Kadlec, …
    Year: 2021

 

  • Title: The emergence of the calvarial hematopoietic niche in health and disease
    Authors: W.A. Mills III, M.A. Coburn, U.B. Eyo
    Year: 2022

 

  • Title: Using zebrafish to elucidate glial-vascular interactions during CNS development
    Authors: R.A. Umans, C. Pollock, W.A. Mills III, K.C. Clark, Y.A. Pan, H. Sontheimer
    Year: 2021

 

🧾 Conclusion

Tré stands out as a forward-thinking and highly skilled researcher whose contributions are shaping the future of neurovascular and glial research. His innovative approach, academic excellence, and recognition by top funding agencies underscore his suitability for leadership roles in neuroscience. As he transitions into an independent research career, Tré is expected to make enduring impacts on the scientific community through groundbreaking discoveries, mentorship, and interdisciplinary collaboration. His trajectory is a testament to his dedication, curiosity, and potential to transform brain health research.

Jørgen Slots | Clinical Neuroscience |

Prof. Dr. Jørgen Slots | Clinical Neuroscience | Best Researcher Award

Prof. Dr. Jørgen Slots, University of Southern California,  United States.

Dr. Jørgen Slots is an internationally recognized scholar in periodontology and oral microbiology, with a rich academic and professional background rooted in Denmark, the United States, and Sweden. After completing multiple advanced degrees—including a D.D.S., Ph.D., D.M.D., and M.B.A.—he held tenured and leadership roles at esteemed institutions such as the Royal Dental College, SUNYAB, and the University of Göteborg. His research focused on microbial causes of periodontal disease, bridging the gap between laboratory science and clinical treatment. Throughout his career, he has been a pioneer in integrating microbiology into dental education and has significantly influenced both teaching and clinical standards globally. His work continues to inform practices in oral health and inspire the next generation of researchers and clinicians.

Profile

Google Scholar

🎓 Early Academic Pursuits

Born in 1944 in Vejle, Denmark, Dr. Jørgen Slots embarked on a lifelong journey in dentistry and biomedical science that began at the prestigious Royal Dental College in Copenhagen. He earned his D.D.S. in 1969 and continued to delve deeper into academic excellence with an M.S. (Lic. Odont.) in 1974. His passion for periodontology led him to complete postgraduate education in this specialty by 1976, setting the stage for a research-intensive career. Not stopping there, he pursued advanced studies in microbiology at the Forsyth Dental Center in Boston, Massachusetts, where he earned a Certificate in Microbiology in 1977. By 1979, he had completed his doctoral thesis (Dr. Odont./Ph.D.), a reflection of his rigorous scientific training and commitment to academic inquiry.

🧪 Professional Endeavors in Dental Science

Dr. Slots’ career spans both private practice and academia, beginning with clinical work in Copenhagen from 1969 to 1976. However, his true calling was in academia and research, where he quickly rose through the ranks at the Royal Dental College, becoming a tenured associate professor in the Department of Periodontology and Bacteriology. His academic influence extended internationally as he moved to the United States, joining the State University of New York at Buffalo (SUNYAB) as a visiting associate professor in 1977. His multifaceted roles there included teaching, research, and graduate mentorship. In 1982, his expertise was recognized with a professorial and chair appointment at the University of Göteborg in Sweden, where he led the Department of Oral Microbiology until 1986.

🔬 Contributions and Research Focus

Dr. Slots’ core research has focused on periodontal microbiology, particularly the microbial etiology of periodontal diseases and the role of anaerobic bacteria in oral infections. His extensive background in both clinical periodontology and microbiology enabled him to bridge these disciplines, pioneering investigations into microbial pathogenesis, host responses, and antimicrobial therapy. His work at the intersection of dentistry and microbiology has contributed significantly to the understanding of how bacterial biofilms influence periodontal health and disease progression. Through his positions in leading institutions, he has mentored countless students and young researchers in translational oral biology.

🏅 Accolades and Recognition

Throughout his distinguished career, Dr. Slots has earned numerous accolades that acknowledge both his scholarly achievements and teaching excellence. His academic journey includes obtaining a D.M.D. from the University of Pennsylvania in 1986, further consolidating his clinical credentials. In 1989, he expanded his skillset by earning an M.B.A. from the Wharton School, indicating his interest in healthcare administration and leadership. Such accomplishments reflect a rare blend of scientific acumen, clinical expertise, and administrative insight that is seldom seen in one individual. His tenured appointments and leadership roles speak volumes about the respect he commands in his field.

🌍 Impact and Global Influence

Dr. Slots’ contributions have had global implications, influencing not only North American dental education but also shaping European periodontal research. His tenure at institutions in Denmark, Sweden, and the United States illustrates his international standing and thought leadership. By combining laboratory science with clinical application, he has contributed to international standards in oral hygiene practices, periodontal disease diagnostics, and treatment protocols. His collaborative work across continents has helped create a robust, evidence-based approach to periodontal care that is taught and practiced worldwide.

📚 Legacy in Dental Education and Microbiology

As a graduate faculty member and department chair, Dr. Slots played a vital role in curriculum development, graduate training, and interdisciplinary integration of oral microbiology into mainstream dental education. He has influenced a generation of oral biologists and periodontists who continue to build upon his foundational work. His teaching style, grounded in research and clinical relevance, made him a beloved educator and mentor. The ripple effects of his academic stewardship can still be seen in the progressive research and pedagogical models employed at the University of Southern California and other leading dental institutions.

🔭 Future Vision and Continuing Relevance

Though his primary academic career has matured, the legacy of Dr. Slots remains very much alive in ongoing research studies, collaborative clinical trials, and academic dialogues. His integration of clinical practice with microbiological research stands as a model for future dental scientists aiming to address emerging challenges in oral-systemic health. With a unique blend of intellectual rigor and compassionate mentorship, Dr. Slots has laid a foundation that will support future breakthroughs in both academic and applied dental sciences. His life’s work continues to inspire innovation and scientific inquiry in oral health worldwide.

Publication

Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions
A Ashimoto, C Chen, I Bakker, J Slots – 1996

Subgingival microflora and periodontal disease
J Slots – 1979

Periodontitis: facts, fallacies and the future
J Slots – 2017

Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival
J Slots, RJ Genco – 1984

Bacteroides gingivalis, Bacteroides intermedius and Actinobacillus actinomycetemcomitans in human periodontal diseases
J Slots, MA Listgarten – 1988

Selective medium for isolation of Actinobacillus actinomycetemcomitans
J Slots – 1982

Actinobacillus actinomycetemcomitans in Human Periodontal Disease: a Cross-Sectional Microbiological Investigation
J Slots, HS Reynolds, RJ Genco – 1980

Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases
ILC Chapple, R Genco, Working Group 2 of the Joint EFP/AAP Workshop – 2013

The occurrence of Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults
J Slots, L Bragd, M Wikström, G Dahlén – 1986

Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment
J Slots, M Ting – 1999

Antibiotics in periodontal therapy: advantages and disadvantages
J Slots, TE Rams – 1990

The predominant cultivable microflora of advanced periodontitis
J Slots – 1977

Actinobacillus actinomycetemcomitans in Human Periodontal Disease: Prevalence in Patient Groups and Distribution of Biotypes and Serotypes Within Families
JJ Zambon, LA Christersson, J Slots – 1983

Systemic antibiotic therapy in periodontics
AJV Winkelhoff, TE Rams, J Slots – 1996

Microbial differences in 2 clinically distinct types of failures of osseointegrated implants
ES Rosenberg, JP Torosian, J Slots – 1991

The predominant cultivable organisms in juvenile periodontitis
J Slots – 1976

Suppression of the periodontopathic microflora in localized juvenile periodontitis by systemic tetracycline
J Slots, BG Rosling – 1983

Periodontal therapy in humans. I. Microbiological and clinical effects of a single course of periodontal scaling and root planing, and of adjunctive tetracycline therapy
J Slots, P Mashimo, MJ Levine, RJ Genco – 1979

Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease
JJ Zambon, J Slots, RJ Genco – 1983

🏁 Conclusion

Dr. Jørgen Slots’ career stands as a remarkable example of interdisciplinary excellence in dental science. Through his research in periodontal microbiology, leadership in academic institutions, and dedication to global dental education, he has left a lasting legacy. His contributions have not only advanced scientific knowledge but also improved clinical approaches to oral healthcare worldwide. Dr. Slots remains a towering figure whose impact resonates in the fields of periodontology, microbiology, and beyond.

Hongrui Meng | Neurodegenerative disease | Excellence in Research Award

Prof. Dr. Hongrui Meng | Neurodegenerative disease | Excellence in Research Award

Prof. Dr. Hongrui Meng,  Institute of Neuroscience, Soochow University, China.

Dr. Hongrui Meng is a highly accomplished neuroscientist whose academic path began with a Ph.D. in Behavioural Neuroscience from Hamamatsu University School of Medicine in Japan. He later conducted postdoctoral research in molecular neurobiology and human genetics at Juntendo University, Tokyo. Currently a professor at the Institute of Neuroscience, Soochow University, Dr. Meng leads a research team dedicated to uncovering the molecular and mitochondrial mechanisms underlying Parkinson’s disease and ALS. His work spans high-impact research projects funded by JSPS, NSFC, and other prestigious bodies. In addition to numerous scientific publications, he has contributed to diagnostic innovation through patented miRNA detection methods. His influence extends beyond academia through translational applications such as wearable technologies for Parkinson’s symptom monitoring.

Profile

Orcid

🎓 Early Academic Pursuits

Dr. Hongrui Meng began his distinguished academic journey in the field of neuroscience by earning his Ph.D. in Behavioural Neuroscience from the prestigious Hamamatsu University School of Medicine in Japan. His early education and training laid a strong foundation in experimental neuroscience, with a focus on the behavioral manifestations of neurodegenerative conditions. These formative years not only sharpened his scientific curiosity but also equipped him with the cross-disciplinary expertise to address complex neurological questions.

🧠 Professional Endeavors

Following his doctoral studies, Dr. Meng advanced his specialization through postdoctoral training in molecular neurobiology and human genetics at Juntendo University in Tokyo. There, he immersed himself in high-level research focusing on the genetic underpinnings of neurological disorders. His competence and dedication soon earned him a faculty appointment as an Assistant Professor in the Department of Research for Neurodegenerative Diseases and Dementia. His professional arc reached a significant milestone in 2020 when he was promoted to Full Professor and moved to the Institute of Neuroscience at Soochow University, where he now leads the Laboratory of Molecular Neurology.

🧬 Contributions and Research Focus

Dr. Meng’s scientific contributions center on the molecular mechanisms of Parkinson’s disease and amyotrophic lateral sclerosis (ALS). His research bridges mitochondrial dysfunction, alpha-synuclein aggregation, and neurodegeneration. He has completed pivotal studies supported by the Japan Society for the Promotion of Science and the Takeda Pharmaceutical Foundation, delving into the role of CHCHD2 gene mutations and mitochondrial pathways. His ongoing projects funded by the National Natural Science Foundation of China (NSFC) explore mitochondrial unfolded protein responses (mtUPR), while another innovative project in Suzhou focuses on wearable technology for monitoring Parkinson’s disease symptoms—demonstrating his commitment to translational and patient-centered neuroscience.

🔬 Innovation and Scientific Output

A notable innovator, Dr. Meng has made strides in molecular diagnostic technologies. His work has led to the development of high-throughput RT-qPCR-based methods for detecting primary and precursor miRNAs, contributing to enhanced genetic analysis of neurodegenerative disorders. He holds a patent granted in South Africa and another under process in China, underscoring his role at the intersection of research and technology. Furthermore, his publications in highly regarded journals like Current Issues in Molecular Biology and Cell Communication and Signaling reflect a consistent record of impactful findings that inform both fundamental neuroscience and clinical approaches.

🏅 Accolades and Recognition

Dr. Meng’s ascent in the academic community has been marked by numerous grants, including multiple from the JSPS and NSFC, attesting to the trust placed in his research vision by top funding bodies. While a formal list of awards may be under-documented, his rapid progression from postdoctoral fellow to professor and research team leader in less than a decade speaks volumes about his recognition among peers and institutional leadership. His leadership in multi-disciplinary and international collaborations is an implicit accolade of his scientific reliability and visionary perspective.

🌍 Impact and Influence

Through his groundbreaking work on mitochondrial mechanisms and neurodegeneration, Dr. Meng is helping to reshape current understanding of Parkinson’s disease pathophysiology. His investigations into alpha-synucleinopathy and microglial disruption have provided fresh insights into cellular degeneration and neuroimmune interactions. Beyond academia, his involvement in developing wearable diagnostic tools highlights his drive to impact patient lives directly. As a consultant on neuroprotective treatments such as PD-018/19, he bridges the academic and pharmaceutical worlds to accelerate therapeutic discovery.

🔮 Legacy and Future Contributions

Looking forward, Dr. Meng is poised to be a leading figure in neurogenetic diagnostics and therapeutic innovation. His laboratory at Soochow University serves as an incubator for future discoveries in neurodegenerative disease mechanisms, and his continued work in mitochondrial research promises to inform emerging therapies. With a growing publication record, international patents, and a robust research pipeline, Dr. Meng’s legacy will be one of bridging basic neuroscience with clinical application—paving the way for novel interventions and a better understanding of brain disorders in the molecular era.

Publication

 

  • Title: Dicer Is Involved in Cytotoxicity and Motor Impairment Induced by TBPH Deficiency
    Authors: Xiang Long, Yijie Wang, Hongrui Meng
    Year: 2025

 

  • Title: Transcriptomic analysis of lipid metabolism genes in Alzheimer’s disease: highlighting pathological outcomes and compartmentalized immune status
    Authors: Sun Y., Zhang Y., Jiang M., Long X., Miao Y., Du H., Zhang T., Meng H., Ma X.
    Year: 2024

 

  • Title: CHCHD2 P14L, found in amyotrophic lateral sclerosis, exhibits cytoplasmic mislocalization and alters Ca2+ homeostasis
    Authors: Aya Ikeda, Hongrui Meng, Daisuke Taniguchi, Muneyo Mio, Manabu Funayama, Kenya Nishioka, Mari Yoshida, Yuanzhe Li, Hiroyo Yoshino, Tsuyoshi Inoshita et al.
    Year: 2024

 

  • Title: TDP-43 mutations-induced defects in miRNA biogenesis and cytotoxicity by differentially obstructing Dicer activity in Drosophila and in vitro
    Authors: Xiang Long, Mengni Jiang, Yongzhen Miao, Huanhuan Du, Ting Zhang, Zhuoya Ma, Jiao Li, Chunfeng Liu, Hongrui Meng
    Year: 2024

 

  • Title: A Simple Technique to Assay Locomotor Activity in Drosophila
    Authors: Long X., Du H., Jiang M., Meng H.
    Year: 2023

 

  • Title: Functional MHCI deficiency induces ADHD-like symptoms with increased dopamine D1 receptor expression
    Authors: Meng H.-R., Suenaga T., Edamura M., Nakahara D., Murakami G., Fukuda A., Ishida Y.
    Year: 2021

 

  • Title: Light-driven activation of mitochondrial proton-motive force improves motor behaviors in a Drosophila model of Parkinson’s disease
    Authors: Imai Y., Hattori N., Inoshita T., Shiba-Fukushima K., Meng H., Hara K.Y., Sawamura N.
    Year: 2019

 

  • Title: Mutations in CHCHD2 cause α-synuclein aggregation
    Authors: Ikeda A., Nishioka K., Takanashi M., Li Y., Mori A., Okuzumi A., Izawa N., Ishikawa K.-I., Funayama M., Imai Y. et al.
    Year: 2019

 

  • Title: Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling
    Authors: Mori A., Hatano T., Koinuma T., Kubo S.-I., Spratt S., Yamashita C., Okuzumi A., Imai Y., Hattori N., Inoshita T. et al.
    Year: 2019

 

  • Title: Twin CHCH proteins, CHCHD2, and CHCHD10: Key molecules of Parkinson’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia
    Authors: Imai Y., Hattori N., Meng H., Shiba-Fukushima K.
    Year: 2019

 

🧾 Conclusion

Dr. Hongrui Meng’s career reflects a dynamic blend of academic excellence, molecular research innovation, and translational neuroscience. His scientific endeavors have not only enriched the understanding of neurodegenerative diseases but have also paved the way for novel diagnostic and therapeutic strategies. With a growing portfolio of impactful research, patents, and leadership in neurobiology, Dr. Meng stands out as a driving force in the global fight against neurological disorders. His work promises continued contributions to neuroscience with lasting influence on both scientific knowledge and patient care.

 

Rosario Osta | Molecular and Cellular Neuroscience | Best Researcher Award

Prof.Dr. Rosario Osta | Molecular and Cellular Neuroscience | Best Researcher Award

Prof. Dr. Rosario Osta, CIBERNED-Fundación Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza,  Spain.

Prof. Rosario Osta Pinzolas is a distinguished geneticist and full professor at the University of Zaragoza, Spain. Her academic roots in veterinary sciences and a Ph.D. in Genetics laid the foundation for a prolific career in biomedical research, particularly in the fields of neuroscience and genetic disorders. With leadership roles in multiple high-profile research consortia such as CIBERNED, TRICALS, and ENCALS, she has established herself as a central figure in neurodegenerative disease research. Her scholarly output includes over 100 indexed publications, multiple national and international research projects, and an h-index exceeding 45.

Profile

Orcid 

Scopus

 

🎓 Early Academic Pursuits

Rosario Osta Pinzolas began her academic journey with a solid foundation in veterinary sciences, graduating as Licenciada en Veterinaria from the University of Zaragoza in 1989. Her academic inclinations quickly shifted toward molecular genetics, leading her to complete a Ph.D. in Genetics at the same university in 1994. Her early studies were driven by a deep curiosity about the mechanisms of heredity and gene expression, setting the tone for a lifelong commitment to biomedical research. These formative years cultivated her scientific rigor and sowed the seeds for a career that would eventually bridge basic science and translational medicine.

🧬 Professional Endeavors in Genetics and Biomedicine

Prof. Osta currently holds the esteemed title of Catedrática (Full Professor) in the Department of Anatomy, Embryology, and Genetics at the Faculty of Veterinary Medicine, University of Zaragoza. Since 2018, she has led her department with a focus on integrative biomedical sciences. She is the principal investigator of the LAGENBIO group recognized by both the Aragon Health Research Institute and the Government of Aragon. Under her leadership, the group has developed two major subprograms: TERAGEN and REGENERAGEN. As coordinator of the “Neuroscience and Mental Health Program” at IISA, she has spearheaded numerous efforts to understand and address neurological diseases through genetic approaches.

🧠 Contributions and Research Focus in Neuroscience

A prominent figure in neuroscience, Prof. Osta’s research lies at the intersection of genetics and neurodegeneration. She is currently the principal investigator of the only Aragon-based group within CIBERNED (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas), reflecting her national influence. Her team represents Zaragoza in prominent European consortia such as TRICALS and ENCALS, both focused on amyotrophic lateral sclerosis (ALS) and other motor neuron diseases. Through more than 100 indexed publications, predominantly in top-tier journals, her work delves into the molecular underpinnings of neurological disorders and explores regenerative medicine strategies, thereby contributing to innovative therapeutic avenues.

🧪 Accolades and Recognition in Scientific Excellence

Prof. Osta’s academic and research career has been punctuated by consistent recognition. She has completed five research productivity periods and one technology transfer period, acknowledged by CNEAI — a mark of sustained scientific impact. She has led over 74 research projects and contributed to more than 100 collaboration contracts, earning her four competitive research awards from respected institutions including CORIS, AREA, IIS, and SEBBM. Her contributions have been lauded not only for scientific quality but also for practical relevance in biomedical advancements.

🚀 Innovation and Impact in Translational Research

An ardent advocate for science with societal impact, Prof. Osta has significantly contributed to technology transfer. She holds nine patents, five of which have been licensed to industry partners. Her collaborations with companies have led to meaningful translational outputs, emphasizing her role in bridging the gap between academic research and real-world solutions. As former Director of the Technology Transfer and Innovation Secretariat at the University of Zaragoza for nearly a decade, she played a crucial role in institutional innovation strategies. Her involvement in joint university-company chairs and her role in the UZ Technology-Based Business Creation Committee for over 12 years further underscore her influence on academic entrepreneurship.

📚 Mentorship and Educational Leadership

Beyond the lab, Prof. Osta has left a profound mark as an educator and mentor. Since 2013, she has coordinated the Interuniversity Doctoral Program in Biomedical and Biotechnological Sciences, a joint initiative between the Universities of Zaragoza and La Rioja. Her mentorship includes the supervision of 13 Ph.D. theses — 9 of which earned international distinction and 6 received extraordinary doctoral awards. Her influence extends to guiding numerous undergraduate and master’s theses, fostering a new generation of scientists with a deep commitment to research excellence and innovation.

🌍 Legacy and Future Contributions

Prof. Rosario Osta’s legacy is defined by her ability to integrate scientific discovery, mentorship, and innovation. As a member of the Scientific Committee of the Luzón Foundation, her vision reaches beyond academia into public health advocacy and strategic research planning. With nearly 19,000 citations on Google Scholar and an h-index of 45, her work continues to inspire and inform global research communities. Her continued leadership in collaborative European projects ensures her contributions will shape the future of neuroscience, genetics, and translational medicine for years to come.

Publication

Title: Novel FKBP prolyl isomerase 1A (FKBP12) ligand promotes functional improvement in SOD1G93A amyotrophic lateral sclerosis (ALS) mice
Authors: L. Moreno-Martinez, N. Gaja-Capdevila, L. Mosqueira-Martín, R. Osta, F.J. Gil-Bea
Year: 2025

Title: Identifying Hub Genes and miRNAs Associated with Alzheimer’s Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies
Authors: E. Gascón, A.C. Calvo, N. Molina, P. Zaragoza, R. Osta
Year: 2024

Title: Comparative Blood Profiling Based on ATR-FTIR Spectroscopy and Chemometrics for Differential Diagnosis of Patients with Amyotrophic Lateral Sclerosis—Pilot Study
Authors: K. Tkachenko, J.M. González Sáiz, A.C. Calvo, R. Osta, C. Pizarro Millán
Year: 2024

Title: Sex differences on constitutive long non-coding RNA expression: Modulatory effect of estradiol and testosterone in muscle cells
Authors: T. López-Royo, L. Moreno-Martinez, L. Moreno-García, R. Manzano, R. Osta
Year: 2024

Title: Differentially expressed lncRNAs in SOD1 G93A mice skeletal muscle: H19, Myhas and Neat1 as potential biomarkers in amyotrophic lateral sclerosis
Authors: T. López-Royo, L. Moreno-Martinez, P. Zaragoza, R. Manzano, R. Osta
Year: 2024

Title: Proteomic profiling of human plasma extracellular vesicles identifies PF4 and C1R as novel biomarker in sarcopenia
Authors: P. Aparicio, D. Navarrete-Villanueva, A. Gómez-Cabello, R. Osta, R. Manzano
Year: 2024

Title: Sporadic Amyotrophic Lateral Sclerosis Skeletal Muscle Transcriptome Analysis: A Comprehensive Examination of Differentially Expressed Genes
Authors: E. Gascón, P. Zaragoza, A.C. Calvo, R. Osta
Year: 2024

Title: Intermediate Repeat Expansion in the ATXN2 Gene as a Risk Factor in the ALS and FTD Spanish Population
Authors: D. Borrego-Hernández, J.F. Vázquez-Costa, R. Domínguez Rubio, M. Povedano, A. García-Redondo
Year: 2024

Title: New Insights into Endogenous Retrovirus-K Transcripts in Amyotrophic Lateral Sclerosis
Authors: L. Moreno-Martinez, S. Macías-Redondo, M.H.P. Strunk, R. Osta, J. Schoorlemmer
Year: 2024

Title: Analysis of Plasma-Derived Exosomal MicroRNAs as Potential Biomarkers for Canine Idiopathic Epilepsy
Authors: M. García-Gracia, L. Moreno-Martinez, A. Hernaiz, S. García-Belenguer, I. Martín-Burriel
Year: 2024

🏆 Conclusion

Based on her outstanding research contributions, innovation in translational science, mentorship record, and leadership within national and European research programs, Prof. Rosario Osta Pinzolas is an exceptionally strong candidate for the Best Researcher Award. Her profile reflects not only academic excellence but also societal impact and visionary leadership. While there is room for enhanced global outreach, her sustained achievements and contributions make her highly deserving of this prestigious recognition.

Abdullah Alghamdi | Emerging Areas in Neuroscience | Best Researcher Award

Mr. Abdullah Alghamdi | Emerging Areas in Neuroscience | Best Researcher Award

Mr. Abdullah Alghamdi, University of Birmingham (UK) and Taibah University (Saudi Arabia),  United Kingdom.

Eng. Abdullah A. Zohaid (SMIEEE, SMIET) is an accomplished electrical engineer and academic with a specialization in Smart Power Systems, focusing on electric vehicles, AI-integrated transportation systems, and sustainable smart city infrastructure. With a solid educational foundation—earning distinctions at every academic level—he has seamlessly merged academic excellence with real-world engineering experience. From his early career at Saudi Aramco to his dual lecturing roles at Taibah University and the University of Birmingham, Abdullah has built a reputation as a forward-thinking researcher, educator, and strategist. His work bridges technical innovation with societal needs, aiming to optimize power grids and energy systems for a sustainable future.

Profile

Google Scholar

🎓 Early Academic Pursuits

From the historic city of Medina, Saudi Arabia, Eng. Abdullah A. Zohaid embarked on his academic journey in Electrical Engineering at Taibah University, where his talent and determination earned him distinction in his final project. His academic passion soon carried him to the United Kingdom, where he pursued an MSc in Electrical Power Systems at the University of Birmingham, graduating with First-Class Honors and distinction. Abdullah’s unwavering commitment to academic excellence continued as he embarked on a Ph.D. in Smart Power Systems at the same institution. Excelling in all areas, he has distinguished himself through both research prowess and scholastic achievement.

⚡ Professional Endeavors

Eng. Alghamdi has established himself as a dynamic professional straddling the worlds of academia and industry. His journey began with Saudi Aramco’s Dodsal Company, contributing to the vital 56″ Gas Pipeline project as an assistant electrical engineer. He transitioned into academia with his role as a Lecturer at Taibah University in Yanbu and later joined the University of Birmingham as a faculty member. Balancing dual academic roles in Saudi Arabia and the UK, Abdullah has developed a unique global perspective, blending practical engineering insight with cutting-edge educational delivery. His presence as an educator underscores his belief in empowering future engineers with real-world readiness.

🔬 Contributions and Research Focus

A scholar deeply embedded in the future of sustainable power, Eng. Alghamdi’s research focuses on Smart Power Systems, electric vehicles, smart charging infrastructures, and the integration of AI in intelligent transportation systems. Through his ongoing Ph.D. research, he explores how emerging technologies can enhance smart grid resilience and contribute to the development of smart cities. He utilizes advanced simulation and optimization tools such as MATLAB/SIMULINK, Python, and Gurobi, combined with machine learning techniques (ANN/CNN), to propose innovative solutions that address pressing energy challenges. His passion for sustainability is evident in his contributions to the global energy discourse, especially in urban mobility and decarbonization.

🏆 Accolades and Recognition

Eng. Zohaid’s career is adorned with recognition and academic milestones. His consistent distinction in every academic phase, including honors during both his MSc and Ph.D. studies, reflects a sustained trajectory of excellence. As a senior member of prestigious engineering bodies like IEEE and IET, and a certified Professional Engineer by the Saudi Council of Engineers, his credentials are a testament to his standing in the professional community. Furthermore, his publications in Q1 journals and contributions to leading international conferences validate the depth of his research and the quality of his scholarly communication.

🌍 Impact and Influence

With affiliations across IEEE working groups and university research circles, Eng. Alghamdi’s influence spans global academic and professional spheres. As a presenter and contributor at numerous high-level conferences — from the IEEE Power & Energy Society to Net Zero Futures and Saudi Innovation events — he has played a key role in shaping conversations on smart energy. His multidisciplinary expertise allows him to drive collaborations across AI, optimization, and power systems, impacting both policy and practice. His ability to simplify complex engineering concepts and communicate them effectively has enabled him to become a trusted voice among peers and students alike.

💡 Innovation and Strategic Vision

Abdullah’s strength lies in visionary thinking and strategic problem-solving. He doesn’t merely research problems—he crafts systems and strategies that reflect future-forward thinking. His approach to sustainable urban infrastructure blends technological acumen with strategic planning, leadership, and innovation. As an educator and researcher, he fosters environments that promote critical thinking and team-based innovation, cultivating the next generation of engineers equipped to face tomorrow’s challenges. His work on smart charging and intelligent transportation embodies the essence of transformative impact through design thinking and systems innovation.

🚀 Legacy and Future Contributions

Looking ahead, Eng. Abdullah A. Zohaid is poised to leave a lasting legacy in the realm of smart power systems and urban sustainability. His dual role as a lecturer and researcher gives him a powerful platform to shape both academic knowledge and real-world applications. With his continued focus on electrification, smart mobility, and AI-driven infrastructure, he is on track to influence policy, inspire innovation, and expand the boundaries of what is possible in modern power systems. His legacy will be defined not only by the technologies he helps build but also by the students and professionals he inspires along the way.

Publication

  • Innovative Prepositioning and Dispatching Schemes of Electric Vehicles for Smart Distribution Network Resiliency and Restoration
    AAM Alghamdi, D. Jayaweera, 2022

 

  • Resilience of Modern Power Distribution Networks with Active Coordination of EVs and Smart Restoration
    AAM Alghamdi, D. Jayaweera, 2023

 

  • Modelling Frameworks Applied in Smart Distribution Network Resiliency and Restoration
    AAM Alghamdi, D. Jayaweera, 2022

 

  • Resilience-Oriented Restoration in Modern Power Distribution Networks with Smart Electric Vehicles Coordination Framework
    A. Alghamdi, D. Jayaweera, 2023

 

  • Risk and Resilience Based Residential Electric Vehicle Integration Framework for Restoration of Modern Power Distribution Networks
    A. Alghamdi, D. Jayaweera, 2025

 

  • Electric Boats and Electric Vehicles Data-Driven Approach for Enhanced Resilience in Power Distribution Networks
    AAM Alghamdi, D. Jayaweera, 2025

 

✅ Conclusion

Eng. Alghamdi stands at the forefront of energy transformation, using research, innovation, and teaching as tools to drive meaningful change. His contributions reflect a blend of technical mastery and visionary leadership, enabling progress in smart mobility, clean energy, and intelligent infrastructure. With a growing portfolio of Q1 publications, prestigious memberships, and impactful conference roles, he continues to influence the field of electrical engineering on a global scale. As he advances in his career, his legacy will be marked by both technological advancements and the future minds he mentors—solidifying his role as a transformative figure in the evolution of smart power systems.

Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang | Computational Neuroscience | Best Researcher Award

Assist. Prof. Dr. Aiying Zhang, University of Virginia, United States.

Dr. Aiying Zhang is a rising scholar in the field of mental health data science, currently serving as an Assistant Professor at the University of Virginia and a Faculty Member at the UVA Brain Institute. Her academic foundation spans statistics, biomedical engineering, and clinical biostatistics, acquired from esteemed institutions including USTC, Tulane University, and Columbia University. Her research focuses on developing advanced computational and statistical tools—such as graphical models and multimodal fusion—to decode complex brain data from imaging and genetics. She applies these innovations to better understand and predict psychiatric conditions such as schizophrenia and Alzheimer’s disease. Her work is distinguished by its interdisciplinary nature, translational relevance, and potential to reshape clinical approaches to mental health.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Aiying Zhang’s journey into the realm of data science and mental health research began with a strong foundation in quantitative sciences. She earned her Bachelor of Science degree in Statistics from the prestigious School for the Gifted Young at the University of Science and Technology of China (USTC) in 2014. Driven by a passion for biomedical innovation and its intersection with human health, she pursued a Ph.D. in Biomedical Engineering from Tulane University, which she completed in 2021. Her graduate years were marked by deep inquiry into statistical modeling and neuroimaging, laying the groundwork for her later interdisciplinary research. She further honed her expertise through postdoctoral training in Clinical Biostatistics and Psychiatry at Columbia University Irving Medical Center, where she blended statistical rigor with clinical insight.

💼 Professional Endeavors

Dr. Zhang is currently an Assistant Professor of Data Science at the University of Virginia, where she has been on the tenure-track faculty since August 2023. She also holds a concurrent position as a Faculty Member at the UVA Brain Institute, underscoring her active role in advancing brain research across institutional boundaries. Prior to her academic appointment at UVA, she served as a Research Scientist II at the New York State Psychiatric Institute, contributing to high-impact psychiatric research. Her professional journey also includes research assistantships at Tulane University and the University of Florida, roles in which she cultivated strong collaborative and translational research skills.

🧠 Contributions and Research Focus

Dr. Zhang’s research lies at the intersection of data science, neuroscience, and mental health. She specializes in developing advanced statistical and computational methodologies to investigate the biological underpinnings of psychiatric and neurodevelopmental disorders. Her work prominently features the use of graphical models—both directed and undirected—and machine learning techniques to analyze complex datasets, such as MRI, DTI, fMRI, MEG, and various genomic modalities including SNP and DNA methylation. Her research has contributed to a deeper understanding of conditions like schizophrenia, Alzheimer’s disease, obsessive-compulsive disorder, and anxiety disorders, through the lens of multimodal data fusion and integrative neurogenetics.

🧪 Innovation in Mental Health Data Science

A distinctive hallmark of Dr. Zhang’s scholarship is her innovative application of multimodal fusion techniques to disentangle the complexities of typical and atypical brain development. Her work leverages high-dimensional neuroimaging and genetic data to draw meaningful inferences about mental health trajectories. She is particularly focused on building interpretable models that bridge the gap between data and clinical insight, thereby enabling earlier and more precise diagnostics. By combining machine learning with biomedical expertise, her contributions pave the way for next-generation tools in psychiatry and neuroscience.

🏅 Accolades and Recognition

Throughout her academic and professional trajectory, Dr. Zhang has earned widespread respect for her analytical acumen and interdisciplinary collaborations. Her postdoctoral role at Columbia, a hub for clinical psychiatry and biostatistics, positioned her among leaders in the field and enriched her research portfolio with translational applications. Her selection as faculty at a leading institution like UVA further reflects recognition of her scholarly excellence and her potential to drive future innovations in mental health data science.

🌍 Impact and Influence

Dr. Zhang’s work has significant implications for both the scientific community and clinical practice. Her methods empower researchers and clinicians alike to draw meaningful patterns from multimodal datasets, thereby advancing precision psychiatry. Moreover, her collaborative efforts across biomedical engineering, statistics, and clinical disciplines have fostered integrative frameworks that extend beyond academic settings into real-world applications. Her contributions are helping to shape a more data-driven and personalized future in mental health care.

🔮 Legacy and Future Contributions

As she continues her academic journey, Dr. Zhang aims to expand her research frontiers by exploring dynamic brain-behavior associations and improving the interpretability of AI models in clinical contexts. With a commitment to mentorship and open science, she is building a legacy rooted in intellectual rigor, innovation, and societal relevance. Her future contributions are expected to not only deepen our understanding of mental health disorders but also inspire a new generation of data scientists dedicated to neuroscience and human well-being.

Publication

  • Leverage multimodal neuro-imaging and genetics to identify causal relationship between structural and functional connectivity and ADHD with Mendelian randomization
    C Ji, S Lee, S Sequeira, J Jin, A Zhang2025

 

  • Integrated brain connectivity analysis with fmri, dti, and smri powered by interpretable graph neural networks
    G Qu, Z Zhou, VD Calhoun, A Zhang, YP Wang2025

 

  • Altered hierarchical rank in intrinsic neural time-scales in autism spectrum disorder
    A Solomon, W Yu, J Rasero, A Zhang2025

 

  • A Privacy-Preserving Domain Adversarial Federated learning for multi-site brain functional connectivity analysis
    Y Zhang, L Wang, KJ Su, A Zhang, H Zhu, X Liu, H Shen, VD Calhoun, …2025

 

  • A Novel GNN Framework Integrating Neuroimaging and Behavioral Information to Understand Adolescent Psychiatric Disorders
    W Yu, G Qu, Y Kim, L Xu, A Zhang2025

 

  • A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence
    A Zhang, G Zhang, B Cai, TW Wilson, JM Stephen, VD Calhoun, YP Wang2024

 

  • Exploring hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee2024

 

  • Time‐varying dynamic Bayesian network learning for an fMRI study of emotion processing
    L Sun, A Zhang, F Liang2024

 

  • Altered hierarchical gradients of intrinsic neural timescales in mild cognitive impairment and Alzheimer’s disease
    A Zhang, K Wengler, X Zhu, G Horga, TE Goldberg, S Lee, …2024

 

  • Associations Between Brain Connectivity and Psychiatric Symptoms in Children: Insights into Adolescent Mental Health
    D Mutu, K Ji, X He, S Lee, S Sequeira, A Zhang2024

 

🧾 Conclusion

Dr. Zhang’s journey exemplifies a seamless integration of data science and neuroscience to address pressing mental health challenges. Her innovative use of multimodal data and machine learning not only contributes to scientific advancement but also enhances real-world clinical decision-making. As she continues to pioneer research at the intersection of computation and psychiatry, her influence is poised to grow, shaping the future of precision mental health care and empowering both academia and clinical practice through data-driven insights.

 

Jiwei Nie | Emerging Areas in Neuroscience | Best Researcher Award

Dr. Jiwei Nie | Emerging Areas in Neuroscience | Best Researcher Award

Dr. Jiwei Nie, Haier Group, China.

Jiwei Nie is an accomplished Chinese researcher specializing in Artificial Intelligence-based Pattern Recognition and Intelligent Detection, with a strong focus on AI large models. His academic journey began with a Bachelor’s in Mechanical Design and Automation and evolved into a deeply integrated path through a Master’s and Ph.D. in Control Science and Engineering at Northeastern University. Throughout his doctoral research, he has made notable contributions to the field of Visual Place Recognition (VPR) for autonomous systems, publishing in prestigious journals such as IEEE Transactions on Intelligent Transportation Systems and IEEE Robotics and Automation Letters. Jiwei’s innovations—especially in lightweight, training-free image descriptors and adaptive texture fusion—have positioned him at the forefront of applied AI in robotics and automation. He has also presented at major international conferences and holds multiple patents.

Profile

Google Scholar

🎓 Early Academic Pursuits

 Jiwei Nie displayed a deep interest in engineering and innovation from an early age. His academic journey began at Hebei University of Science and Technology, where he pursued a Bachelor’s degree in Mechanical Design, Manufacturing, and Automation. His strong academic performance earned him first-class honors, and he graduated in July 2018. Motivated to delve deeper into the fusion of machinery and intelligence, he advanced to Northeastern University, completing his Master’s degree in Mechanical and Electronic Engineering by July 2020. Driven by a vision to integrate control systems with intelligent technologies, he enrolled in a PhD program in Control Science and Engineering under a prestigious Integrated Master-PhD track, further solidifying his expertise in the intelligent automation domain.

💼 Professional Endeavors

Jiwei’s professional development has been tightly interwoven with his academic path, where he has continuously applied theoretical insights to practical problems in Artificial Intelligence and Control Systems. As a member of the Communist Party of China, he approaches his work with a strong sense of discipline and public responsibility. His fluency in English, proven by his CET-6 certification, has enabled him to actively contribute to the global research community, engaging in international collaborations and conferences. Alongside his research, Jiwei has contributed to academic circles through mentorship roles and cross-institutional projects, making a significant impact both inside and outside his university.

🤖 Contributions and Research Focus

Jiwei Nie’s research is at the forefront of Artificial Intelligence-based Pattern Recognition and Intelligent Detection, with a special emphasis on AI Large Models. His work focuses on developing lightweight, efficient algorithms for Visual Place Recognition (VPR)—a critical capability for autonomous vehicles and robotic systems. He has pioneered new methods in saliency encoding, feature mixing, and texture fusion, leading to more robust and adaptive AI systems. Through these contributions, he has addressed real-world challenges in long-term navigation and intelligent perception, pushing the boundaries of control science and machine intelligence.

🏆 Accolades and Recognition

During his PhD, Jiwei published multiple high-impact articles in leading SCI-indexed journals. His paper in the IEEE Transactions on Intelligent Transportation Systems, titled “A Training-Free, Lightweight Global Image Descriptor for Long-Term Visual Place Recognition Toward Autonomous Vehicles”, has been particularly well-received and is ranked in Q1. Additional works in IEEE Robotics and Automation Letters have been ranked in Q2, highlighting his innovations such as MixVPR++ and Efficient Saliency Encoding. Furthermore, Jiwei’s presence has been notable at world-class conferences like ICPR, ICRA, and IROS, where he presented his work to a global audience of peers and experts. He also holds several patents, including an invention patent, and continues to submit further manuscripts to top-tier venues.

🌍 Impact and Influence

Jiwei’s research has had a significant influence on the future of intelligent transportation and autonomous systems. His development of training-free VPR models has contributed to making autonomous navigation more scalable and cost-effective, especially in dynamic environments where traditional AI systems fail. His proposed methods are not only academically rigorous but are also computationally efficient, paving the way for real-world deployment. Through his innovation and academic collaborations, he has helped bridge the gap between theoretical AI models and practical engineering applications, which is vital for industries moving toward Industry 4.0 and smart mobility solutions.

🧠 Legacy and Future Contributions

Looking ahead, Jiwei Nie aspires to deepen his research in generalized large AI models, expanding the scalability and generalization abilities of pattern recognition systems across domains beyond transportation—such as smart surveillance, industrial robotics, and medical imaging. His planned future publications and continued patent filings reflect a strong ambition to lead the next generation of intelligent systems research. Jiwei is committed to fostering innovation that aligns with both academic excellence and societal needs, aiming to establish himself as a pioneering researcher and mentor in the evolving field of intelligent detection and AI integration.

🔬 Vision in AI and Control Engineering

Jiwei Nie stands as a rising expert in the convergence of Artificial Intelligence, Control Science, and Robotic Vision, a field essential for the future of smart systems and automation. His deep technical knowledge, coupled with a strategic vision, positions him to contribute not only as a researcher but also as a thought leader in AI-driven engineering. With a career rooted in innovation and societal benefit, his trajectory points toward a legacy of breakthroughs that will influence smart cities, autonomous systems, and global AI research landscapes for years to come.

Publication

  • Title: A survey of extrinsic parameters calibration techniques for autonomous devices
    Authors: J Nie, F Pan, D Xue, L Luo
    Year: 2021

 

  • Title: A training-free, lightweight global image descriptor for long-term visual place recognition toward autonomous vehicles
    Authors: J Nie, JM Feng, D Xue, F Pan, W Liu, J Hu, S Cheng
    Year: 2023

 

  • Title: Forest: A lightweight semantic image descriptor for robust visual place recognition
    Authors: P Hou, J Chen, J Nie, Y Liu, J Zhao
    Year: 2022

 

  • Title: A novel image descriptor with aggregated semantic skeleton representation for long-term visual place recognition
    Authors: J Nie, JM Feng, D Xue, F Pan, W Liu, J Hu, S Cheng
    Year: 2022

 

  • Title: Efficient saliency encoding for visual place recognition: Introducing the lightweight pooling-centric saliency-aware VPR method
    Authors: J Nie, D Xue, F Pan, Z Ning, W Liu, J Hu, S Cheng
    Year: 2024

 

  • Title: 3D semantic scene completion and occupancy prediction for autonomous driving: A survey
    Authors: G Xu, W Liu, Z Ning, Q Zhao, S Cheng, J Nie
    Year: 2023

 

  • Title: A Novel Image Descriptor with Aggregated Semantic Skeleton Representation for Long-term Visual Place Recognition
    Authors: N Jiwei, F Joe-Mei, X Dingyu, P Feng, L Wei, H Jun, C Shuai
    Year: 2022

 

  • Title: Optic Disc and Fovea Localization based on Anatomical Constraints and Heatmaps Regression
    Authors: L Luo, F Pan, D Xue, X Feng, J Nie
    Year: 2021

 

  • Title: A Novel Fractional-Order Discrete Grey Model with Initial Condition Optimization and Its Application
    Authors: Y Liu, F Pan, D Xue, J Nie
    Year: 2021

 

  • Title: EPSA-VPR: A lightweight visual place recognition method with an Efficient Patch Saliency-weighted Aggregator
    Authors: J Nie, Q Zhào, D Xue, F Pan, W Liu
    Year: 2025

 

🔚 Conclusion

With a solid foundation in engineering and control systems and an innovative mindset in artificial intelligence, Jiwei Nie is poised to become a key figure in the evolution of intelligent automation technologies. His work contributes not only to academic theory but also to practical applications that influence the development of autonomous vehicles, intelligent detection systems, and large AI model architectures. As he approaches the completion of his Ph.D. in early 2025, Jiwei is expected to continue pushing technological boundaries, inspiring future advancements in AI research and real-world intelligent systems deployment.

Camilla Bellone | Translational Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Camilla Bellone | Translational Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Camilla Bellone,  University of Geneva, Switzerland.

Dr. Camilla Bellone is a renowned neuroscientist whose academic and research career has been marked by excellence, innovation, and impact. From her foundational training in Italy to her leadership role in Geneva, she has made pioneering contributions to understanding the neural underpinnings of social behavior. Her work bridges basic science and clinical relevance, and she has played a vital role in training, mentorship, and international collaboration within the neuroscience community.

Profile

Google Scholar

 

🎓 Early Academic Pursuits

Dr. Camilla Bellone began her academic journey with a Master’s degree in Pharmacy from the University of Milano in 2000. With a strong foundation in pharmacology and medical chemistry, she pursued her Ph.D. in “Pharmacology, Toxicology, and Medical Chemotherapy” at the same institution, completing it in 2006. Her early education shaped a robust scientific mindset, preparing her for a career at the intersection of neuroscience and pharmacology. These formative years set the tone for her later work on the molecular mechanisms that govern complex behaviors in both healthy and diseased states.

🧪 Professional Endeavors

After her doctoral studies, Dr. Bellone enhanced her research acumen through a postdoctoral fellowship at the University of California, San Francisco (UCSF), gaining international exposure. She later returned to Switzerland, where she served as a scientist under the Ambizione Fellowship at the University of Geneva. Her academic path took a significant leap when she became an Assistant Professor at the University of Lausanne in 2014, followed by a transition to the University of Geneva in 2016. In 2020, she was promoted to Associate Professor in the Department of Basic Neuroscience, where she continues to lead cutting-edge investigations and mentor future neuroscientists.

🧠 Contributions and Research Focus

At the core of Dr. Bellone’s research lies a deep interest in the neurobiological basis of social behavior, with a particular focus on how these processes are disrupted in neuropsychiatric disorders. Her lab explores the synaptic and circuit-level mechanisms that underpin social cognition, often using advanced molecular and behavioral techniques. Her work has provided critical insights into how alterations in neural plasticity and connectivity contribute to diseases such as schizophrenia and autism spectrum disorders. With over 40 peer-reviewed publications in high-impact journals like Nature Neuroscience and Neuron, Dr. Bellone’s research continues to advance the field of behavioral neuroscience.

🏆 Accolades and Recognition

Dr. Bellone’s scientific excellence has been recognized through several prestigious honors. In 2023, she received the EBBS Mid-Career Award and the Leenaards Scientific Prize for her collaborative project on cerebellar stimulation in schizophrenia. Earlier, she was elected to the distinguished FENS-KAVLI Network of Excellence in 2015, highlighting her position among Europe’s most promising neuroscientists. In 2014, she was honored with the Fondation du Prix Pfizer de la Recherche, marking an early milestone in her independent research career.

🌍 Impact and Influence

Beyond her lab, Dr. Bellone has made meaningful contributions to the academic and scientific community. She has delivered over 20 invited lectures at international conferences and institutions, sharing her discoveries with a global audience. As a dedicated mentor, she has guided eight master’s students and seven PhD candidates, nurturing the next generation of neuroscientists. Her commitment extends to active service on academic committees, grant review panels, and editorial boards, reflecting her role as a respected leader in the field.

👩‍🔬 Balancing Science and Life

A champion of work-life integration, Dr. Bellone has managed to thrive professionally while embracing motherhood. She took two career breaks following the birth of her three children, exemplifying resilience and balance in a demanding academic landscape. Her story is an inspiration to young scientists, especially women, striving to build careers in STEM while honoring personal life choices.

🔬 Legacy and Future Contributions

Looking ahead, Dr. Bellone’s work holds promise for transforming our understanding of social dysfunction in mental illness. Her innovative approaches—blending circuit neuroscience, pharmacology, and behavior—position her as a leading voice in the neurobiology of social behavior. With continued support from initiatives like the ERC Consolidator Grant, her research will likely pave the way for novel therapeutic interventions, leaving a lasting legacy in neuroscience and psychiatry.

Publication

  • Title: NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease
    Author: P Paoletti, C Bellone, Q Zhou
    Year: 2013

 

  • Title: Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression
    Author: C Bellone, C Lüscher
    Year: 2006

 

  • Title: Rapid bidirectional switching of synaptic NMDA receptors
    Author: C Bellone, RA Nicoll
    Year: 2007

 

  • Title: Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area
    Author: M Mameli, C Bellone, MTC Brown, C Lüscher
    Year: 2011

 

  • Title: In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons
    Author: A De la Rossa, C Bellone, B Golding, I Vitali, J Moss, N Toni, C Lüscher, …
    Year: 2013

 

  • Title: Mechanisms of synaptic depression triggered by metabotropic glutamate receptors
    Author: C Bellone, C Lüscher, M Mameli
    Year: 2008

 

  • Title: Effects of streptozotocin‐diabetes on the hippocampal NMDA receptor complex in rats
    Author: F Gardoni, A Kamal, C Bellone, GJ Biessels, GMJ Ramakers, F Cattabeni, …
    Year: 2002

 

  • Title: Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping
    Author: G Di Liberto, S Pantelyushin, M Kreutzfeldt, N Page, S Musardo, R Coras, …
    Year: 2018

 

  • Title: mGluRs induce a long‐term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors
    Author: C Bellone, C Lüscher
    Year: 2005

 

  • Title: SHANK3 controls maturation of social reward circuits in the VTA
    Author: S Bariselli, S Tzanoulinou, C Glangetas, C Prévost-Solié, L Pucci, …
    Year: 2016

 

✅ Conclusion

Dr. Bellone’s journey reflects a remarkable blend of scientific curiosity, academic leadership, and personal resilience. As she continues to explore the brain’s most intricate social circuits, her influence will undoubtedly expand across neuroscience, psychiatry, and therapeutic innovation. Her career serves as both a roadmap and an inspiration for emerging scientists navigating the evolving landscape of brain research.